Answer: a) An = An-1 + An-2
b) 55ways
Step-by-step explanation:
a) a nickel is 5 cents and a dime is 10cent so a multiple of 5 cents is the possible way to pay the tolls in both choices.
Let An represents the number of possible ways the driver can pay a toll of 5n cents, so that
An = 5n cents
Case 1: Using a nickel for payment which is 5 cents, the number of ways given as;
An-1 = 5( n-1)
Case 2: using a dime which is two 5 cents, the number of ways is given as;
An-2 = 5(n-2)
Summing up the number of ways, we have
An = An-1 + An-2
From the relation,
If n= 0, Ao= 1
n =1, A1= 1
b) 45 cents paid in multiples of 5cents will give us 9 ways(A9)
From the relation, we have that
Ao = 1
A1 = 1
An =An-1 + An-2
Ao = 1
A1 = 1
A2 = A1+Ao = 1+1= 2
A3 = A2 + A1 = 3
A4 = A3+A2=5
A5=A4+A3=8
A6=A5+A4=13
A7 =A6+A5 = 21
A8= A7+A6= 34
A9= A8+A7= 55
So there are 55ways to pay 45cents.
Answer:
2 second one cuz x can't be smaller than 0 because x is SQUARED
Answer:
B) 4√2
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Parametric Differentiation
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Arc Length Formula [Parametric]: ![\displaystyle AL = \int\limits^b_a {\sqrt{[x'(t)]^2 + [y(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Csqrt%7B%5Bx%27%28t%29%5D%5E2%20%2B%20%5By%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

Interval [0, π]
<u>Step 2: Find Arc Length</u>
- [Parametrics] Differentiate [Basic Power Rule, Trig Differentiation]:

- Substitute in variables [Arc Length Formula - Parametric]:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{[1 + sin(t)]^2 + [-cos(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B%5B1%20%2B%20sin%28t%29%5D%5E2%20%2B%20%5B-cos%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
- [Integrand] Simplify:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx)
- [Integral] Evaluate:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx = 4\sqrt{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx%20%3D%204%5Csqrt%7B2%7D)
Topic: AP Calculus BC (Calculus I + II)
Unit: Parametric Integration
Book: College Calculus 10e
Answer:2.5×10^-5. (And i think u meant in Scientific Notation)
Step-by-step explanation//Give thanks(and or Brainliest) if helpful (≧▽≦)//