Answer:
- x = 37
- DG = 22
- AG = 44
- AD = 66
Step-by-step explanation:
We presume your "centroid ratio theorem" tells you that AG = 2·DG, so ...
(x+7) = 2(x -15)
x + 7 = 2x - 30 . . . . eliminate parentheses
37 = x . . . . . . . . . . .add 30-x
Then AG = 37+7 = 44
and DG = 37-15 = 22.
Of course, AD = AG +GD = 44 +22 = 66
Answer:
Option C The parties with a larger number of customers are associated with the longer times elapsed until the party left the restaurant.
Step-by-step explanation:
The correlation coefficient 0.78 shows that positive association between two variables number of customers and elapsed time until party left restaurant.
The positive association means that as the number of customers in a party increases the elapsed time also increase. So, we can say that the parties with a larger number of customers are associated with the longer times elapsed until the party left the restaurant.
<span>First we have to find the sum and the difference of those polynomials- The sum is: ( 3 x^5y - 2 x^3y^4 - 7 xy^3 ) + ( - 8 x^5y + 2 x^3y^4 + xy^3 ) = 3 x^5 - 2 x^3y^4 - 7xy^3 - 8 x^5y + 2 x^3y^4 + xy^3 = - 5 x^5y - 6 xy^3. And the difference: ( 3 x^5y - 2 x^3y^4 - 7 xy^3 ) - ( - 8 x^5y + 2 x^3y^4 + xy^3 ) = 3 x^5y - 2 x^3y^4 - 7 xy^3 + 8 xy^5 - 2 x^3y^4 - xy^3 = 11 xy^5 - 4 x^3y^4 - 8xy^3. The highest exponent in both polynomials is 5. Answer: The degree of the polynomials is 5.</span>
Answer:
a
Step-by-step explanation: