Help with what there is nothing?
If you notice, the figure has two hexagonal faces and 6 rectangles.
now the rectangles are just 4x9 each, so their area is just 6(4*9) for all 6.
the hexagons has a
distance from the center perpendicular to a side of 7.8, namely the
apothem is 7.8, and since each side is 9 km long, the perimeter is 9+9+9+9+9+9.
since the area of a regular polygon is (1/2)(apothem)(perimeter), we can simply get the area of those two hexagons and the area of the rectangles, sum them up, and that's the surface area of the hexagonal prism.
Answer:
9.15x10^6
Step-by-step explanation:
<h2>Recurring decimals such as 0.26262626…, all integers and all finite decimals, such as 0.241, are also rational numbers. Alternatively, an irrational number is any number that is not rational. ... For example, the square root of 2 is an irrational number because it cannot be written as a ratio of two integers.</h2><h2>Worked Examples
</h2><h2>1 - recognize Surds
</h2><h2>A surd is a square root which cannot be reduced to a whole number.
</h2><h2>
</h2><h2>For example,
</h2><h2>
</h2><h2>4–√=2
</h2><h2>is not a surd, because the answer is a whole number.
</h2><h2>
</h2><h2>Alternatively
</h2><h2>
</h2><h2>5–√
</h2><h2>is a surd because the answer is not a whole number.
</h2><h2>
</h2><h2>You could use a calculator to find that
</h2><h2>
</h2><h2>5–√=2.236067977...
</h2><h2>but instead of this we often leave our answers in the square root form, as a surd.
</h2><h2>
</h2><h2>2 - Simplifying Surds
</h2><h2>During your exam, you will be asked to simplify expressions which include surds. In order to correctly simplify surds, you must adhere to the following principles:
</h2><h2>
</h2><h2>ab−−√=a−−√∗b√
</h2><h2>a−−√∗a−−√=a
</h2><h2>Example
</h2><h2>(a) - Simplify
</h2><h2>
</h2><h2>27−−√
</h2><h2>Solution
</h2><h2>(a) - The surd √27 can be written as:
</h2><h2>
</h2><h2>27−−√=9–√∗3–√
</h2><h2>9–√=3
</h2><h2>Therefore,
</h2><h2>
</h2><h2>27−−√=33–√
</h2><h2>Example
</h2><h2>(b) - Simplify
</h2><h2>
</h2><h2>12−−√3–√
</h2><h2>Solution
</h2><h2>(b) -
</h2><h2>
</h2><h2>12−−√3–√=12−−√∗3–√=(12∗3)−−−−−−√=36−−√
</h2><h2>36−−√=6
</h2><h2>Therefore,
</h2><h2>
</h2><h2>12−−√3–√=6
</h2><h2>Example
</h2><h2>(c) - Simplify
</h2><h2>
</h2><h2>45−−√5–√
</h2><h2>Solution
</h2><h2>(c) -
</h2><h2>
</h2><h2>45−−√5–√=45/5−−−−√=9–√=3
</h2><h2>Therefore,
</h2><h2>
</h2><h2>45−−√5–√=3</h2>
To make this easy you should put the equation into slope-intercept form :
y = mx + b
the y-intercept is b
remember : the y-intercept can be 0
i hope this helps !!