It depends on what the question is, buddy
Answer:
a.The phenotypic proportions obtained after having the genotypes are 50% marbled seeds, 25% spotted and dotted seeds since they are codominant, 25% spotted seeds.
b. Taking into account the F1 genotypes in the previous point, the expected phenotypes for the first crossing are 100% marbled seeds and for the second crossing 100% dotted seeds.
Explanation:
Let's suppose:
Marbled allele: M
Spotted allele: S
Dotted allele: D
Allele for Clear: C
a. Because both crosses were between homozygous parents, the entire F1 genotype is the same.
For the first crossing the descendants have the MS genotype, and for the second crossing the descendants have the DC genotype. It is enough to make a Punnett square to obtain the different combinations of genotypes between the crossing of MS and DC.
Answer:
expand
true
energy transfers from your finger to the ice cube
<span><span>A plant that, when self-fertilized, only produces offspring with the same traits.</span></span>
While there is no graph provided and I cannot find the graph online, I will base my answer through theory.
In theory, the most common blood type is O+, followed by A+, then B+, then AB+. Rh negative blood is deemed to be rare. While the most common blood type is O+, the same blood type is also called the "universal donor" as a type O+ blood has no antigens attached in red blood cells therefore the probability of adverse reactions (i.e. hemolytic reactions) when transfused to other blood types are close to nil. In an emergency situation, wherein there is not enough time to do proper crossmatching, blood type O+ can be used therefore supplies of blood type O+ are easily depleted.