Answer:
d. both the slope and price elasticity of demand are equal to 0.
Step-by-step explanation:
In order to graph the demand curve, the quantity demanded is plotted along x-axis and the price is plotted along y-axis. An image attached below shows the horizontal demand curve.
Horizontal demand curve, as its name indicates, is a horizontal line which is parallel to x-axis. Since, the slope of any line parallel to x-axis is 0, we can conclude that the slope of Horizontal demand curve is 0.
A horizontal demand curve can be observed for a perfectly competitive market. Since, its a perfect competition, the price of a product by all competitors will be the same. In this case, if a firm decides to increase the price, he will loose his market share as no customer will buy the product at increased price. They will rather go with the other competitor who is offering a similar product at lower price.
On the other hand, if a competitor decides to lower his price in such case, he will experience loss. Therefore, the competitors do not have the option to change the price. Therefore, we can say the price elasticity of demand in this case is 0.
So, option D describes the horizontal demand curve correctly.
Answer:
Step-by-step explanation:
1 yes
2 yes
3 yes
4 yes
Answer:
286.97
Step-by-step explanation:
find the area of the rectangle first
14*15=210
Next
Find the area of a circle
πr^2=a
the radius of the circle is half the height of the rectangle
π*(7*7)=a
a=153.94
Now
Divide the area by two
153.94/2=76.97
Now add the two areas
76.97+210
Answer:12/7
Step-by-step explanation:
7b-4=8
7b-4+4=8+4
7b=12
b=12/7
Check the picture below.
a)
so the perimeter will include "part" of the circumference of the green circle, and it will include "part" of the red encircled section, plus the endpoints where the pathway ends.
the endpoints, are just 2 meters long, as you can see 2+15+2 is 19, or the radius of the "outer radius".
let's find the circumference of the green circle, and then subtract the arc of that sector that's not part of the perimeter.
and then let's get the circumference of the red encircled section, and also subtract the arc of that sector, and then we add the endpoints and that's the perimeter.
b)
we do about the same here as well, we get the full area of the red encircled area, and then subtract the sector with 135°, and then subtract the sector of the green circle that is 360° - 135°, or 225°, the part that wasn't included in the previous subtraction.