Answer:
Coefficient of Performance
I know none of these are actually the answer but odysseyware gave me credit for
(4,2)
R(x) = 60x - 0.2x^2
The revenue is maximum when the derivative of R(x) = 0.
dR(x)/dx = 60 - 0.4x = 0
0.4x = 60
x = 60/0.4 = 150
Therefore, maximum revenue is 60(150) - 0.2(150)^2 = 9000 - 4500 = $4,500
Maximum revenue is $4,500 and the number of units is 150 units
The function is

1. let's factorize the expression

:

the zeros of f(x) are the values of x which make f(x) = 0.
from the factorized form of the function, we see that the roots are:
-3, multiplicity 1
3, multiplicity 1
0, multiplicity 3
(the multiplicity of the roots is the power of each factor of f(x) )
2.
The end behavior of f(x), whose term of largest degree is

, is the same as the end behavior of

, which has a well known graph. Check the picture attached.
(similarly the end behavior of an even degree polynomial, could be compared to the end behavior of

)
so, like the graph of

, the graph of

:
"As x goes to negative infinity, f(x) goes to negative infinity, and as x goes to positive infinity, f(x) goes to positive infinity. "