9514 1404 393
Answer:
(b) (1, 1/6)
Step-by-step explanation:
The "unit rate" is always the y-value for x=1 when the relationship is proportional (as it is here).
That point is not specifically shown on the graph. It would be (1, 1/6).
Answer:
53lbs.
Step-by-step explanation:
If Kevin bought 3 20lbs. Bags of gravel he would have 60 lbs. of gravel. In the end he has 7 lbs. of gravel left he used 53 pounds.
Equations:
7+x=60 or 60-7=53 lbs.
Step-by-step explanation:
This is an example of correlation because there is an obvious relationship between the two scenarios.
First of all we will understand the question!!
<em>The</em><em> </em><em>question</em><em> </em><em>is</em><em> </em><em>saying</em><em> </em><em>that</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>given</em><em> </em><em>a</em><em> </em><em>function</em><em> </em><em>and</em><em> </em><em>you</em><em> </em><em>have</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em><em> </em><em>which</em><em> </em><em>will</em><em> </em><em>give</em><em> </em><em>the</em><em> </em><em>maximum</em><em> </em><em>profit</em><em>.</em><em>.</em><em>.</em><em> </em><em>Lets</em><em> </em><em>solve</em><em> </em><em>it</em><em> </em><em>by</em><em> </em><em>finding</em><em> </em><em>the</em><em> </em><em>extrema</em><em> </em><em>using</em><em> </em><em>the</em><em> </em><em>vertex</em>
<em></em>
- <u>Identify the coefficients a and b of the quadratic function</u>
<em></em>
- <u>Since a<0, the function has the maximum value at x, calculated by substituting a and b into x=-b/2a</u>
<u></u>
- <u>Solve</u><u> </u><u>the</u><u> </u><u>equation</u><u> </u><u>for</u><u> </u><u>x</u><u> </u>
<u></u>
- <u>The maximum of the quadratic function is at </u><u>x</u><u>=</u><u>3</u>
R^2+2r-33=0 move constant to other side by adding 33 to both sides
r^2+2r=33 halve the linear coefficient, square it and add to both sides, in this case it is just one
r^2+2r+1=34 now the left side is a perfect square...
(r+1)^2=34 take the square root of both sides...
r+1=34^(1/2) subtract 1 from both sides
r=-1+34^(1/2) and -1-34^(1/2)