Answer:
Hence, the relation R is a reflexive, symmetric and transitive relation.
Given :
A be the set of all lines in the plane and R is a relation on set A.

To find :
Which type of relation R on set A.
Explanation :
A relation R on a set A is called reflexive relation if every
then
.
So, the relation R is a reflexive relation because a line always parallels to itself.
A relation R on a set A is called Symmetric relation if
then
for all
.
So, the relation R is a symmetric relation because if a line
is parallel to the line
the always the line
is parallel to the line
.
A relation R on a set A is called transitive relation if
and
then
for all
.
So, the relation R is a transitive relation because if a line
s parallel to the line
and the line
is parallel to the line
then the always line
is parallel to the line
.
Therefore the relation R is a reflexive, symmetric and transitive relation.
Answer:
(4,1)
Step-by-step explanation:
Using substitution you can determine that 2*4-7 is in fact equal to 1
Answer: x= 47 (If that says 3x+2)(the picture is a little blurry)
Step-by-step explanation:
Linear pairs of angles sum to 180.
37+(3x+2) =180
Combine like terms
39+ 3x = 180
Subtract 39 from both sides
3x = 141
Divide both sides by 3
x= 47
Answer:
that is an addition sign the correct answer is B
Step-by-step explanation:
Answer:
(a) 0.9412
(b) 0.9996 ≈ 1
Step-by-step explanation:
Denote the events a follows:
= a person passes the security system
= a person is a security hazard
Given:

Then,

(a)
Compute the probability that a person passes the security system using the total probability rule as follows:
The total probability rule states that: 
The value of P (P) is:

Thus, the probability that a person passes the security system is 0.9412.
(b)
Compute the probability that a person who passes through the system is without any security problems as follows:

Thus, the probability that a person who passes through the system is without any security problems is approximately 1.