Answer:

Step-by-step explanation:
Since line m is parallel to line n, therefore:
(consecutive interior angles are supplementary)
Solve for x
Add like terms

Add 7 to both sides


Divide both sides by 11


Answer:
A: the proposed route is 3.09 miles, so exceeds the city's limit
Step-by-step explanation:
The length of the route in grid squares can be found using the Pythagorean theorem on the two parts of the route. Let 'a' represent the length of the route to the park from the start, and 'b' represent the route length from the park to the finish. Then we have (in grid squares) ...
a^2 = (12-6)^2 +3^2 = 45
a = √45 = 3√5
and
b^2 = (6 -2)^2 +4^2 = 32
b = √32 = 4√2
Then the total length, in grid squares, is ...
3√5 + 4√2 = 6.7082 +5.6569 = 12.3651
If each grid square is 1/4 mile, then 12.3651 grid squares is about ...
(12.3651 squares) · (1/4 mile/square) = 3.0913 miles
The proposed route is too long by 0.09 miles.
Answer:
f=13/9
Step-by-step explanation:
f-8/9=5/9
solution
f=5/9+8/9
f= 5+8/9=13/9