Answer:
Obtuse isosceles
Step-by-step explanation:
Since this is an obtuse isosceles triangle, the two missing angles must be acute angles.
Answer:
It dosn't matter which direction the car is going, it's going 45 km/hr thus it's going 45/2 in 0.5 hr = 22.5 km
Step-by-step explanation:
Answer:
D. <F = 65 degrees
Step-by-step explanation:
First off, we know that the measures of <F and the angle adjacent to it add to 90 degrees, as indicated by the right angle. They are complementary angles.
The complementary angle of <F has an intercepted arc of 50 degrees. Because the angle is on the opposite end of the circle, it is half of the measure of the arc. Therefore, it is 25 degrees.
Because this angle and <F sum to 90, just subtract 90-25 to find <F.
<F = 65 degrees
Answer: Area = 1500 feet^2
Step-by-step explanation:
Jim is enclosing a rectangular garden with 170 feet of fencing. This means the perimeter of the rectangular garden =170 feet
Let length = x
Let width = w
The length of the garden,x is 10 feet more than twice it's width, w. This means
x =10+2w---------1
Perimeter = 2x+2w =170---------2
Putting equation 1 in equation 2,
2(10+2w) +2w= 170
20 + 4w +2w = 170
6w = 170-20=150
w = 150/6
= 25feet
Put w=25 in equation 1
x =10 +2×25= 10+50=60 feet
Area = length × width = x×w
= 60×25=1500feet^2
Answer:
u = x tan(A) - sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or u = sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) + x tan(A)
Step-by-step explanation:
Solve for u:
(x sin(A) - u cos(A))^2 + (x cos(A) + y sin(A))^2 = x^2 + y^2
Subtract (x cos(A) + y sin(A))^2 from both sides:
(x sin(A) - u cos(A))^2 = x^2 + y^2 - (x cos(A) + y sin(A))^2
Take the square root of both sides:
x sin(A) - u cos(A) = sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or x sin(A) - u cos(A) = -sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2)
Subtract x sin(A) from both sides:
-u cos(A) = sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) - x sin(A) or x sin(A) - u cos(A) = -sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2)
Divide both sides by -cos(A):
u = x tan(A) - sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or x sin(A) - u cos(A) = -sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2)
Subtract x sin(A) from both sides:
u = x tan(A) - sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or -u cos(A) = -x sin(A) - sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2)
Divide both sides by -cos(A):
Answer: u = x tan(A) - sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or u = sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) + x tan(A)