In this problem, we need to plug in the given x values for

and find a and b.
When we plug in 1, we get:

Simplify:



We got our first statement about the values of the variables. If we find one more we can find those 2 variables.
We have another given root: 4.
Plug it in:




Now we have our second one. We can combine them:

I use elimination method which is easier here.
Multiply the top equation by -1:

Add them up:

Simplify:

Now we have a, we can plug in one of those equations to find b:



So, the answers are

and

.
The system of linear equations represents the situation is;
x + y = 125
x + y = 1255x + 8y = 775
<h3>Simultaneous equation</h3>
Simultaneous equation is an equation in two unknown values are being solved for at the same time.
let
- number of quick washes = x
- number of premium washes = y
x + y = 125
5x + 8y = 775
From equation (1)
x = 125 - y
5x + 8y = 775
5(125 - y) + 8y = 775
625 - 5y + 8y = 775
- 5y + 8y = 775 - 625
3y = 150
y = 150/3
y = 50
x + y = 125
x + 50 = 125
x = 125 - 50
x = 75
Therefore, the number of quick washes and premium washes Monica’s school band had is 75 and 50 respectively.
Learn more about simultaneous equation:
brainly.com/question/16863577
#SPJ1
Answer:
73
Step-by-step explanation:
Answer:
x=-1/3, y=-13/3. (-1/3, -13/3).
Step-by-step explanation:
y=x-4
4x-y=3
------------
4x-(x-4)=3
4x-x+4=3
3x+4=3
3x=3-4
3x=-1
x=-1/3
y=-1/3-4
y=-1/3-12/3=-13/3
Answer:
Step-by-step explanation:
X^2 + 7x + 7x + 49 = x*(x+7) + 7*(x+7) = (x+7)(x+7) = (x+7)^2