I cannot read please show closer
Answer:
4.47 m/s.
Explanation:
distance traveled, d = 10 miles
time, t = 1 hour
Speed of the runner, v = d / t
Speed of the runner = 10 miles / 1
Speed of the runner = 10 mph
1 mph ----------------------- 0.44704 m/s
10 mph -----------------------?
= 4.47 m/s
Thus, in 2 hours the distance traveled will change but the speed it still 10 mph or 4.47 m/s.
Answer:
24) W = 75 [J]; 25) W = 1794[J]; 26) n = 8.8 (times) or 9 (times)
Explanation:
24) This problem can be solved by means of the following equation.

where:
DU = internal energy difference [J]
Q = Heat transfer [J]
W = work [J]
Since there are no temperature changes the internal energy change is equal to zero
DU = 0
therefore:

The work is equal to the heat transfered, W = 75 [J].
25) The heat transfer can be calculated by means of the following equation.
![Q = m*c_{p}*DT\\where:\\m = mass = 0.4[kg]\\c_{p} = specific heat = 897[J/kg*K]\\DT= 5 [C]](https://tex.z-dn.net/?f=Q%20%3D%20m%2Ac_%7Bp%7D%2ADT%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%200.4%5Bkg%5D%5C%5Cc_%7Bp%7D%20%3D%20specific%20heat%20%3D%20897%5BJ%2Fkg%2AK%5D%5C%5CDT%3D%205%20%5BC%5D)
Q = 0.4*897*5 = 1794[J]
Work is equal to heat transfer, W = 1794[J]
26) Each time the bag falls the potential energy is transformed into heat energy, which is released into the environment. In this way the potential energy is equal to the developed heat.

where:
m = mass = 0.5[kg]
g = gravity = 9.81[m/s^2]
h = 1.5 [m]
![E_{p}=0.5*9.81*1.5\\E_{p}=7.36[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3D0.5%2A9.81%2A1.5%5C%5CE_%7Bp%7D%3D7.36%5BJ%5D)
The heat developed can be calculated by means of the following equation.
![Q=m*c_{p}*DT\\Q=0.5*130*1\\Q=65[J]](https://tex.z-dn.net/?f=Q%3Dm%2Ac_%7Bp%7D%2ADT%5C%5CQ%3D0.5%2A130%2A1%5C%5CQ%3D65%5BJ%5D)
The number of times will be calculated as follows
n = 65/7.36
n = 8.8 (times) or 9 (times)
Answer:
Half: 6 cm^2 Whole: 12 cm^2
Explanation:
First, we know that the edges of the cube are 2 cm long. So there are 6 faces on a cube. We do 2x6=12 cm^2 as our total surface area. Then it asks for each half. So you would divide it by 2 and get 6 cm^2 as your half.
The mixing ratio is 6.
To find the answer, we have to know about the mixing ratio.
<h3>
What is mixing ratio?</h3>
- The mixing ratio must be calculated in a complex manner.
- A saturated vapor pressure (es) for values of air temperature and an actual vapor pressure (e) for values of dewpoint temperature must be determined in order to determine the mixing ratio.
- The air temperature and/or dewpoint temperature must first be converted to degrees Celsius (°C) before the vapor pressures can be calculated.
- The equation below can be used to determine the relative humidity (rh), as well as the actual mixing ratio and saturated mixing ratio,

where; w is the mixing ratio and w(s) is the saturation mixing ratio.
- In our question, it is given that,

- Thus, the mixing ratio will be,

Thus, we can conclude that, the mixing ratio is 6.
Learn more about mixing ratio here:
brainly.com/question/8791831
#SPJ4