Answer:
B. w=12.68rad/s
C. α=3.52rad/s^2
Explanation:
B)
We can solve this problem by taking into account that (as in the uniformly accelerated motion)
( 1 )
where w0 is the initial angular speed, α is the angular acceleration, s is the arc length and r is the radius.
In this case s=3.7m, r=16.2cm=0.162m, t=3.6s and w0=0. Hence, by using the equations (1) we have


to calculate the angular speed w we can use
Thus, wf=12.68rad/s
C) We can use our result in B)

I hope this is useful for you
regards
Answer:

Explanation:
The gravitational force between two corpses is given by the following equation:

Where F is the force, G is the gravitational constant
(
), M and m are the masses of the corpses and d is the distance between them.
So we have that:


We can solve the problem by using Newton's second law of motion:

where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>
Y - yo = Vo*t - g * (t^2) / 2
Vo = - 9.0 m/s
t = 0.50 s
=> y - yo = -9.0 m/s * 0.5 s - 9.8 m/s^2 * (0.5s)^2 / 2 = - 4.5m - 1.225m = - 5.725 m.
Answer: option c) - 5.7