Answer:
Both Bacteria and Archaea are prokaryotes, single-celled microorganisms with no nuclei, and Eukarya includes us and all other animals, plants, fungi, and single-celled protists – all organisms whose cells have nuclei to enclose their DNA apart from the rest of the cell.
Explanation:
Both Bacteria and Archaea are prokaryotes, single-celled microorganisms with no nuclei, and Eukarya includes us and all other animals, plants, fungi, and single-celled protists – all organisms whose cells have nuclei to enclose their DNA apart from the rest of the cell.
I can’t see the image but I would guess animals such as deer or horse or elephants or any large animal have the ability to run over the rocks and turn them to smaller sediments
Answer:
1.The pleural cavity aids optimal functioning of the lugs during breathing. It transmits movements of the chest wall to the lungs, particularly during heavy breathing. The closely approved chest wall transmits pressures to the visceral pleural surface and hence to the lung (10-19.
2.The diaphragm, located below the lungs, is the major muscle of respiration. It is a large, dome-shaped muscle that contracts rhythmically and continually, and most of the time, involuntarily. Upon inhalation, the diaphragm contracts and flattens and the chest cavity enlarge.
Explanation:
Answer and Explanation:
Ribosomes are the primary structure for protein synthesis. They can be found in the rough endoplasmic reticulum or floating in the cytosol.
Free ribosomes are not attached to any cytoplasmic structure or organelle. They synthesize proteins only for internal cell use. Other ribosomes are attached to the membrane of the endoplasmic reticulum and they are in charge of synthesizing membrane proteins or exportation proteins. Free and attached ribosomes are identical and they can alternate their location. This means that although free ribosomes are floating in the cytosol, eventually, they can get attached to the endoplasmic reticulum membrane.
Synthesis of proteins that are destined to membrane or exportation starts in the cytoplasm with the production of a molecule portion known as a <u>signal aminoacidic sequence</u>. This signal sequence varies between 13 and 36 amino acids, is located in the <u>amino extreme</u> of the synthesizing protein, and when it reaches a certain length, it meets the <u>signal recognizing particle</u>. This particle joins the signal sequence of the protein and leads the synthesizing protein and associated ribosome to a specific region in the Rough endoplasmic reticulum where it continues the protein building. When they reach the membrane of the endoplasmic reticulum, the signal recognizing particle links to a receptor associated with a pore. Meanwhile, the ribosome keeps synthesizing the protein, and the enlarged polypeptidic chain goes forward the reticulum lumen through the pore. While this is happening, another enzyme cuts the signal sequence, an action that requires energy from the ATP hydrolysis. When the new protein synthesis is complete, the polypeptide is released into the reticulum lumen. Here it also happens the protein folding (which is possible by the formation of disulfide bridges of proteins are formed) and the initial stages of glycosylation (the oligosaccharide addition).
Once membrane proteins are folded in the interior of the endoplasmic reticulum, they are packaged into vesicles and sent to the Golgi complex, where it occurs the final association of carbohydrates with proteins. The Golgi complex sends proteins to their different destinies. Proteins destined to a certain place are packaged all together in the same vesicle and sent to the target organelle. In the case of membrane proteins, they are packaged in vesicles and sent to the cell membrane where they get incrusted.
There are certain signal sequences in the <u>carboxy-terminal extreme</u> of the protein that plays an important role during the transport of membrane proteins. A signal as simple as one amino acid in the c-terminal extreme is responsible for the correct transport of the molecule through the whole traject until it reaches the membrane.
Answer:
Brocolli
Berries
Soynuts
Celery
Spinach
Pears
Explanation:
Six foods that are rich in phytochemicals.