Answer:
Choice B
Step-by-step explanation:
Given radical expression:
![\sqrt[4]{1296 {x}^{16} {y}^{12} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B1296%20%7Bx%7D%5E%7B16%7D%20%20%7By%7D%5E%7B12%7D%20%7D%20)
To Find:
The Simpler form of this expression
Soln:
![= \sqrt[4]{1296 {x}^{16} {y}^{12} }](https://tex.z-dn.net/?f=%20%3D%20%20%5Csqrt%5B4%5D%7B1296%20%7Bx%7D%5E%7B16%7D%20%20%7By%7D%5E%7B12%7D%20%7D%20)
We could re-write the given expression, according to the law of exponents:
![= \tt \sqrt[4]{(6x {}^{4}y {}^{3}) {}^{4} }](https://tex.z-dn.net/?f=%20%3D%20%20%5Ctt%20%5Csqrt%5B4%5D%7B%286x%20%7B%7D%5E%7B4%7Dy%20%7B%7D%5E%7B3%7D%29%20%20%7B%7D%5E%7B4%7D%20%20%7D%20)
Now we need to bring terms out of the radical as:

Bring out 6x^4 from the absolute & put y^3 only in it:

Choice B is accurate.
Answer:
b^2-4b+3=0
b²-3x-b+3=0
b(b-3)-1(b-3)=0
(b-3)(b-1)=0
either
b=3 or b=1
.
2n^2 + 7 = -4n + 5
2n²+4n+7-5=0
2n²+4n+2=0
2(n²+2n+1)=0
(n+1)²=0/2
:.n=-1
.
x - 3x^2 = 5+ 2x - x^2
0=5+ 2x - x^2-x +3x^2
0=5+x+2x²
2x²+x+5=0
comparing above equation with ax²+bx +c we get
a=2
b=1
c=5
x={-b±√(b²-4ac)}/2a ={-1±√(1²-4×2×5)}/2×1
={-1±√-39}/2
Answer:
A. 14x14x28
B. The maximum volume is 5488 cuibic inches
Step-by-step explanation:
The problem states that the box has square ends, so you can express volume with:

Using the restriction stated in the problem to get another equation you can substitute in the one above:

Substituting <em>y</em> whit this equation gives:

Now find the limit of <em>x</em>:

Find the length:

You can now calculate the maximum volume:

When y=2 and y=5
1. 2y-1 and (3y-5+y or 4y-5)
when y=2 ; 2(2)-1 = 3 and 4(2)-5=3
when y=5 ; 2(5)-1 = 9 and 4(5)-5=15
----nonequivalent-----
2.5y+4 and (7y+4-2y or 5y+4)
so you don't have to place any value in because 5y+4 and 7y+4-2y are equal,
whatever you place any value in, it will be all the same then
-----equivalent------
and no need to find more