if a + b + c is equals to 270 then prove that sin a cos b sin c + cos a sin b sin c + sin a sin b cos c = cos a cos b cos c
1 answer:
Answer:

![cos(a+b) = cos(270-c)~~~~~~~~~and~~~~~~~~~sin(a+b)=sin(270-c)\\or, cos(a+b) = -sinc,~sin(a+b) = -cosc\\Now,\\L.H.S. = sina.cosb.sinc +cosa.sinb.sinc + sina.sinb.cosc\\~~~~~~~~~~= sinc (sina.cosb+cosa.sinb)+sina.sinb.cosc\\~~~~~~~~~~=sinc[sin(a+b)]+sina.sinb.cosc\\~~~~~~~~~~=sinc.-cosc+sina.sinb.cosc\\~~~~~~~~~~=cosc(sina.sinb-sinc)\\~~~~~~~~~~=cosc[sina.sinb+cos(a+b)]\\~~~~~~~~~~=cosc[sina.sinb+cosa.cosb-sina.sinb]\\~~~~~~~~~~=cosc.cosa.cosb\\~~~~~~~~~~=cosa.cosb.cosc \\](https://tex.z-dn.net/?f=cos%28a%2Bb%29%20%3D%20cos%28270-c%29~~~~~~~~~and~~~~~~~~~sin%28a%2Bb%29%3Dsin%28270-c%29%5C%5Cor%2C%20cos%28a%2Bb%29%20%3D%20-sinc%2C~sin%28a%2Bb%29%20%3D%20-cosc%5C%5CNow%2C%5C%5CL.H.S.%20%3D%20sina.cosb.sinc%20%2Bcosa.sinb.sinc%20%2B%20sina.sinb.cosc%5C%5C~~~~~~~~~~%3D%20sinc%20%28sina.cosb%2Bcosa.sinb%29%2Bsina.sinb.cosc%5C%5C~~~~~~~~~~%3Dsinc%5Bsin%28a%2Bb%29%5D%2Bsina.sinb.cosc%5C%5C~~~~~~~~~~%3Dsinc.-cosc%2Bsina.sinb.cosc%5C%5C~~~~~~~~~~%3Dcosc%28sina.sinb-sinc%29%5C%5C~~~~~~~~~~%3Dcosc%5Bsina.sinb%2Bcos%28a%2Bb%29%5D%5C%5C~~~~~~~~~~%3Dcosc%5Bsina.sinb%2Bcosa.cosb-sina.sinb%5D%5C%5C~~~~~~~~~~%3Dcosc.cosa.cosb%5C%5C~~~~~~~~~~%3Dcosa.cosb.cosc%20%5C%5C)
Hope I helped you!
You might be interested in
Answer:
72 games won
Step-by-step explanation:
Answer:
Step-by-step explanation:
7x=14
X=2
Answer: 570
Step-by-step explanation:
That is true because you are still dividing x by three either way
Answer:
_5(_5)=25
25+2=27
3(_5)=_15
27_15=12