Answer:
We expect the enthalpies of combustion of two isomers to be different.
The molecular formular of the two molecules are very similar.
So the balanced chemical equation for the two combustion reactions are the same.
Explanation:
In calculation of the combustion enthalpiesfrom the isomers of the products and reactant.
The difference will be in the standard enthalpies of formation of the two combustion products.
The rod-shaped n- octane has vibrational and rotational motion possible more than the almost spherical neoprene.
Hey there!
In order to solve for the percentage of water in the compound, you will first need to find its total molar mass. You can do this by adding up the molar masses of each individual element in the compound. Then, you will divide the mass that you find of the water molecules by the total mass to get the percentage.
→ Na₂CO₃ ×<span> 10 H</span>₂<span>O
</span>→ Na₂ = 22.9898 × 2 = 45.9796
→ C = 12.0107
→ O₃ = 15.999 × 3 = 47.997
→ 10 H₂O = 18.015 × 10 = 180.15
Now, just add all of those numbers up for the total molar mass.
→ 45.9796 + 12.0107 + 47.997 + 180.15 = <span>286.1373
</span>
The last step is to divide the molar mass of the 10 water molecules by the total mass.
→ 180.15 ÷ 286.1373 = <span>0.62959 </span>≈ 0.63
Your answer will be about 63%.
Hope this helped you out! :-)
Answer:
AgNO3 + KI → Agl + KNO3. Double-replacement reaction
Explanation:
Based on solubility rules, Silver, Ag produce an insoluble salt in presence of halides (Fluorides F-, Chlorides Cl-, Iodides, I-, and bromides Br-). That means the mixture of AgNO3 (Ag⁺ ions) with KI (I- ions) produce AgI as insoluble salt.
The reaction is:
<h3>AgNO3 + KI → Agl + KNO3</h3><h3 />
And this is a double-replacement reaction where the cations exchange of anion to produce 2 new compounds.