Answer: (although the question does not sate whether if you separate them physically or through energy. so i did both)
1. can be separated (When high-energy ultraviolet rays strike ordinary oxygen molecules (O2), they split the molecule into two single oxygen atoms, known as atomic oxygen)
2. can be separated, but through electrolysis, fiscally moving a crane to generate electricity to separate the molecules
3. Most solid particles, composed of diamagnetic or weak paramagnetic materials, cannot be extracted by a conventional magnetic separator. physically cannot be separated. but through heat yes
4. but there is a catch: doing so requires energy. ... If energy from coal were applied to drive the decomposition reaction, more CO2 would be released than consumed, because no process is perfectly efficient. so it cant be separated physically
5. it can be separated but it needs energy physically cannot be separated.
Explanation:
Hello! Specific heat is the amount of energy required by known amount of substance to raise its temperature by one degree celsius. In our question it is given that 2000J energy when supplied to 125 g of unknown substance raised its temperature by 18 oC. So, The specific heat is calculated as follow;
You are testing which fertilizer makes the radishes grow the fastest.
factors you should control: sunlight exposure, water amount, fertilizer amount.
Measure: check the rows of radishes to see how much each row has grown in comparison to the others. Whichever row with the healthiest radishes has the best fertilizer.
Answer:
Cl⁻ was oxidized.
Explanation:
- 4HCl + MnO₂ → Cl₂ + 2H₂O + MnCl₂
Oxidation can be defined as the process in which the oxidation number of a substance increases.
On the left side of the equation, Cl has a charge of -1 (in HCl); while on the right side of the equation Cl has a charge of 0 in Cl₂.
Thus, Cl⁻ was oxidized.