This problem can be readily solved if we are familiar with the point-slope form of straight lines:
y-y0=m(x-x0) ...................................(1)
where
m=slope of line
(x0,y0) is a point through which the line passes.
We know that the line passes through A(3,-6), B(1,2)
All options have a slope of -4, so that should not be a problem. In fact, if we check the slope=(yb-ya)/(xb-xa), we do find that the slope m=-4.
So we can check which line passes through which point:
a. y+6=-4(x-3)
Rearrange to the form of equation (1) above,
y-(-6)=-4(x-3) means that line passes through A(3,-6) => ok
b. y-1=-4(x-2) means line passes through (2,1), which is neither A nor B
****** this equation is not the line passing through A & B *****
c. y=-4x+6 subtract 2 from both sides (to make the y-coordinate 2)
y-2 = -4x+4, rearrange
y-2 = -4(x-1)
which means that it passes through B(1,2), so ok
d. y-2=-4(x-1)
this is the same as the previous equation, so it passes through B(1,2),
this equation is ok.
Answer: the equation y-1=-4(x-2) does NOT pass through both A and B.
Answer:
- 33°
- 90° -J°
Step-by-step explanation:
<h3>1)</h3>
If x represents the measure of the angle, its complement is 90-x. The problem statement tells us ...
x +24 = 90 -x
2x = 66 . . . . . add x-24
x = 33 . . . . . . divide by 2
The measure of the angle is 33°.
__
<h3>2)</h3>
Using J for x in the given complement relation:
The measure of the complement of J° is (90 -J)°.
Answer:
4k+11=4011
Step-by-step explanation:
7k - 3k=4k
4k+11=4011
Answer:
b. $28
Step-by-step explanation:
We have these following probabilities:
0.4 = 40% probability of $40
0.2 = 20% probability of $30
0.2 = 20% probability of $20
0.2 = 20% probability of $10
The expected value is:
We multiply each value by its probability. So

So the correct answer is:
b. $28