Answer:
Efectivamente, la suma de la medida de los ángulos internos de cualquier figura triangular es igual a 180º. Ahora bien, la oración posee un error de redacción, pues tanto los triángulos rectos como los equiláteros o los isósceles poseen dicha característica, es decir, no es únicamente una característica de los triángulos rectos. Además, la suma de los ángulos interiores de dos triángulos rectos sería igual a 360º, no a 180º.
Answer:
Step-by-step explanation:
Let us recall parallelogram properties, which states that opposite angles of parallelogram are congruent.
We can see from graph that side US is parallel to TR and measure of angle U equals to measure of angle R, therefore, quadrilateral drawn in our given graph is a parallelogram.
Since we know that opposite sides of parallelogram are congruent. In our parallelogram UT=SR and US=TR.
In our triangle STU and triangle TSR side TS=TS by reflexive property of congruence.
Therefore, our triangles are congruent by SSS congruence.
Really hope you can read cursive and I really hope this helps! (:
Answer: 155
Step-by-step explanation:
180 - 25 = 155