(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2
Answer:
7644
Step-by-step explanation:
Hope this helps!
The volume is 60 cubic inches.
To solve, follow the formula Volume = Length · Height · Width. If you are solving without a calculator, simply multiply the length and the height first, then multiply the product of that by the width, 2 / 3.
V = 10 · 9 · 2/3
V = (10 · 9) 2/3
V = 90 · 2/3
<span>V = 60 in.³
</span>
Hope this helps. Good luck! :)
Answer:
Last Choice / D
Step-by-step explanation:
you want to isolate v!
E = 1/2 m v^2
multiply both sides by 2
2E = mv^2
divide both sides by m
2E/m = v^2
square root both sides
v = ±
please click heart to give thanks :)