1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeTakaya
2 years ago
9

Lenovo uses the​ zx-81 chip in some of its laptop computers. the prices for the chip during the last 12 months were as​ follows:

                                                                                                             month price per chip month price per chip january ​$1.901.90 july ​$1.801.80 february ​$1.611.61 august ​$1.821.82 march ​$1.601.60 september ​$1.601.60 april ​$1.851.85 october ​$1.571.57 may ​$1.901.90 november ​$1.621.62 june ​$1.951.95 december ​$1.751.75 this exercise contains only part
d. with alphaα ​= 0.1 and the initial forecast for october of ​$1.831.83​, using exponential​ smoothing, the forecast for periods 11 and 12 is ​(round your responses to two decimal​ places): month oct nov dec forecast ​$1.831.83 1.801.80 1.791.79 with alphaα ​= 0.3 and the initial forecast for october of ​$1.761.76​, using exponential​ smoothing, the forecast for periods 11 and 12 is ​(round your responses to two decimal​ places): month oct nov dec forecast ​$1.761.76 1.701.70 1.681.68 with alphaα ​= 0.5 and the initial forecast for october of ​$1.721.72​, using exponential​ smoothing, the forecast for periods 11 and 12 is ​(round your responses to two decimal​ places): month oct nov dec forecast ​$1.721.72 1.651.65 1.631.63 based on the months of​ october, november, and​ december, the mean absolute deviation using exponential smoothing where alphaα ​= 0.1 and the initial forecast for octoberequals=​$1.831.83 is ​$ . 160.160 ​(round your response to three decimal​ places). based on the months of​ october, november, and​ december, the mean absolute deviation using exponential smoothing where alphaα ​= 0.3 and the initial forecast for octoberequals=​$1.761.76 is ​$ 0.1130.113 ​(round your response to three decimal​ places). based on the months of​ october, november, and​ december, the mean absolute deviation using exponential smoothing where alphaα ​= 0.5 and the initial forecast for octoberequals=​$1.721.72 is ​$ nothing ​(round your response to three decimal​ places).
Mathematics
1 answer:
Stella [2.4K]2 years ago
5 0
Given the table below of the prices for the Lenovo zx-81 chip during the last 12 months

\begin{tabular}
{|c|c|c|c|}
Month&Price per Chip&Month&Price per Chip\\[1ex]
January&\$1.90&July&\$1.80\\
February&\$1.61&August&\$1.83\\
March&\$1.60&September&\$1.60\\
April&\$1.85&October&\$1.57\\
May&\$1.90&November&\$1.62\\
June&\$1.95&December&\$1.75
\end{tabular}

The forcast for a period F_{t+1} is given by the formular

F_{t+1}=\alpha A_t+(1-\alpha)F_t

where A_t is the actual value for the preceding period and F_t is the forcast for the preceding period.

Part 1A:
Given <span>α ​= 0.1 and the initial forecast for october of ​$1.83, the actual value for october is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha A_{10}+(1-\alpha)F_{10} \\  \\ =0.1(1.57)+(1-0.1)(1.83) \\  \\ =0.157+0.9(1.83)=0.157+1.647 \\  \\ =1.804

Therefore, the foreast for period 11 is $1.80


Part 1B:

</span>Given <span>α ​= 0.1 and the forecast for november of ​$1.80, the actual value for november is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.1(1.62)+(1-0.1)(1.80) \\  \\ &#10;=0.162+0.9(1.80)=0.162+1.62 \\  \\ =1.782

Therefore, the foreast for period 12 is $1.78</span>



Part 2A:

Given <span>α ​= 0.3 and the initial forecast for october of ​$1.76, the actual value for October is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha&#10; A_{10}+(1-\alpha)F_{10} \\  \\ =0.3(1.57)+(1-0.3)(1.76) \\  \\ &#10;=0.471+0.7(1.76)=0.471+1.232 \\  \\ =1.703

Therefore, the foreast for period 11 is $1.70

</span>
<span><span>Part 2B:

</span>Given <span>α ​= 0.3 and the forecast for November of ​$1.70, the actual value for november is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.3(1.62)+(1-0.3)(1.70) \\  \\ &#10;=0.486+0.7(1.70)=0.486+1.19 \\  \\ =1.676

Therefore, the foreast for period 12 is $1.68



</span></span>
<span>Part 3A:

Given <span>α ​= 0.5 and the initial forecast for october of ​$1.72, the actual value for October is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha&#10; A_{10}+(1-\alpha)F_{10} \\  \\ =0.5(1.57)+(1-0.5)(1.72) \\  \\ &#10;=0.785+0.5(1.72)=0.785+0.86 \\  \\ =1.645

Therefore, the forecast for period 11 is $1.65

</span>
<span><span>Part 3B:

</span>Given <span>α ​= 0.5 and the forecast for November of ​$1.65, the actual value for November is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.5(1.62)+(1-0.5)(1.65) \\  \\ &#10;=0.81+0.5(1.65)=0.81+0.825 \\  \\ =1.635

Therefore, the forecast for period 12 is $1.64



Part 4:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span></span></span><span>α = 0.3, we obtained that the forcasted values of october, november and december are: $1.83, $1.80, $1.78

Thus, the mean absolute deviation is given by:

\frac{|1.57-1.83|+|1.62-1.80|+|1.75-1.78|}{3} = \frac{|-0.26|+|-0.18|+|-0.03|}{3}  \\  \\ = \frac{0.26+0.18+0.03}{3} = \frac{0.47}{3} \approx0.16

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.1 of October, November and December is given by: 0.157



</span><span><span>Part 5:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span><span>α = 0.3, we obtained that the forcasted values of october, november and december are: $1.76, $1.70, $1.68

Thus, the mean absolute deviation is given by:

&#10; \frac{|1.57-1.76|+|1.62-1.70|+|1.75-1.68|}{3} = &#10;\frac{|-0.17|+|-0.08|+|-0.07|}{3}  \\  \\ = \frac{0.17+0.08+0.07}{3} = &#10;\frac{0.32}{3} \approx0.107

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.3 of October, November and December is given by: 0.107



</span></span>
<span><span>Part 6:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span><span>α = 0.5, we obtained that the forcasted values of october, november and december are: $1.72, $1.65, $1.64

Thus, the mean absolute deviation is given by:

&#10; \frac{|1.57-1.72|+|1.62-1.65|+|1.75-1.64|}{3} = &#10;\frac{|-0.15|+|-0.03|+|0.11|}{3}  \\  \\ = \frac{0.15+0.03+0.11}{3} = &#10;\frac{29}{3} \approx0.097

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.5 of October, November and December is given by: 0.097</span></span>
You might be interested in
Sharkira went bowling with her friends.She paid $3 to rent shoes and then 4.75 for each game of bowling. If she spent a total of
9966 [12]
$21 - $3 = $18

$18 - $4.75 = $13.25 

$13.25 - $4.75 = $8.50

$8.50 - $4.75 = $3.75

Which means that she played 3 games, and has $3.75 left over. 

But if you were to divide 4.75 from 21 it would equal 4 games and $2 left over.

21 - 4.75 = 16. 25

16.25 - 4.75 = 11.50

11.50 - 4.75 = 6.75

6.75 - 4.75 = 2

4 games and $2 dollars left over.


Answer - 3

6 0
3 years ago
Can someone answer this?
kolezko [41]
The correct answer is A.

For y=x, the slope is 1, meaning that as x increments by 1, y also increments by 1.
Using this logic, we know that the graph goes up looking from left to right.

If both ends were to point up or down it would resemble more of a quadratic (parabola).
3 0
3 years ago
For the example shown, Jesse said “The total monthly cost of using the ceiling light and the dishwasher was $0.74.” Is Jesse cor
Svetach [21]

Answer:

what do u mean

6 0
2 years ago
Read 2 more answers
Find the area of the shaded figure in square feet. Round to the nearest tenth if<br>necessary.​
marusya05 [52]

Answer:

to be honest I'm not sure

3 0
3 years ago
Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s). Points A and B
8090 [49]

Answer:

answer is 11 12

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • A centroid is the intersection of three
    15·1 answer
  • What's 3/4 times 7/9 in simplest form
    9·2 answers
  • HELPPPP!!!! <br> Need the answer ASAP!!
    11·1 answer
  • Pleaseeeeeeee helpppppp
    8·1 answer
  • Express the following ratio in lowest terms.<br> 105 knives to 120 spoons
    10·1 answer
  • -3x - 5 = 16<br> (PLEASE HELP ME ASAP I WILL GIVE YOU BRAINLIEST AND PLEASE SHOW YOUR WORK)
    10·1 answer
  • 5. Which of the following is an
    12·1 answer
  • What fraction of the game did Danrnels team score 2 or more runs
    5·1 answer
  • NEED HELP ASAP|!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    5·1 answer
  • What is the common denominator 4/15 and 1/3? Need answers ASAP​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!