1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weeeeeb [17]
4 years ago
10

Solve for u and figure out the answer 57=3u

Mathematics
2 answers:
Wittaler [7]4 years ago
8 0
u = 19 


Hope this helps, Good luck! (:
patriot [66]4 years ago
4 0

Hello there!! Here are the steps to your math problem.

<span>57=<span>3u</span></span>Step 1: Flip the equation.<span><span>3u</span>=57</span>Step 2: Divide both sides by 3.<span><span><span>‌<span><span>3u/</span>3</span></span>‌</span>=<span><span>‌<span>57/3</span></span>‌</span></span><span>u=<span>19</span></span>Hope this helped and have a fantastic day!


You might be interested in
What’s the answer to this problem
snow_tiger [21]

Answer:

2

Step-by-step explanation:

It’s not real

6 0
3 years ago
Differentiating a Logarithmic Function in Exercise, find the derivative of the function. See Examples 1, 2, 3, and 4.
mote1985 [20]

Answer:

\frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

Step-by-step explanation:

To find the derivative of the function y(x)=\ln \left(\frac{x}{x^2+1}\right) you must:

Step 1. Rewrite the logarithm:

\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 2. The derivative of a sum is the sum of derivatives:

\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }}={\left(\left(\ln{\left(x \right)}\right)^{\prime } - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }\right)

Step 3. The derivative of natural logarithm is \left(\ln{\left(x \right)}\right)^{\prime }=\frac{1}{x}

{\left(\ln{\left(x \right)}\right)^{\prime }} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }={\frac{1}{x}} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 4. The function \ln{\left(x^{2} + 1 \right)} is the composition f\left(g\left(x\right)\right) of two functions f\left(u\right)=\ln{\left(u \right)} and u=g\left(x\right)=x^{2} + 1

Step 5.  Apply the chain rule \left(f\left(g\left(x\right)\right)\right)^{\prime }=\frac{d}{du}\left(f\left(u\right)\right) \cdot \left(g\left(x\right)\right)^{\prime }

-{\left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }} + \frac{1}{x}=- {\frac{d}{du}\left(\ln{\left(u \right)}\right) \frac{d}{dx}\left(x^{2} + 1\right)} + \frac{1}{x}\\\\- {\frac{d}{du}\left(\ln{\left(u \right)}\right)} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- {\frac{1}{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}

Return to the old variable:

- \frac{1}{{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- \frac{\frac{d}{dx}\left(x^{2} + 1\right)}{{\left(x^{2} + 1\right)}} + \frac{1}{x}

The derivative of a sum is the sum of derivatives:

- \frac{{\frac{d}{dx}\left(x^{2} + 1\right)}}{x^{2} + 1} + \frac{1}{x}=- \frac{{\left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right)}}{x^{2} + 1} + \frac{1}{x}=\frac{1}{x^{3} + x} \left(x^{2} - x \left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right) + 1\right)

Step 6. Apply the power rule \frac{d}{dx}\left(x^{n}\right)=n\cdot x^{-1+n}

\frac{1}{x^{3} + x} \left(x^{2} - x \left({\frac{d}{dx}\left(x^{2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(x^{2} - x \left({\left(2 x^{-1 + 2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x \frac{d}{dx}\left(1\right) + 1\right)\\

\frac{1}{x^{3} + x} \left(- x^{2} - x {\frac{d}{dx}\left(1\right)} + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x {\left(0\right)} + 1\right)=\\\\\frac{1 - x^{2}}{x \left(x^{2} + 1\right)}

Thus, \frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

3 0
3 years ago
(-1/3,4) is the solution set of?
Nostrana [21]
Solution set of what ?
5 0
3 years ago
8 - n = -4 what does N equal
Kryger [21]

Answer:

Make N alone

There is an 8 so we subtract 8 from both sides so the equation is still equal

-4 - 8 = -12

Because we are subtracting N it is positive

N = 12

8 - 12 = -4

Hope this helps

Step-by-step explanation:

8 0
4 years ago
What is the first term in a geometric sequence if the common ratio is − 2 and the sum of the first six terms is −105?
Serggg [28]
\bf \qquad \qquad \textit{sum of a finite geometric sequence}&#10;\\\\&#10;S_n=\sum\limits_{i=1}^{n}\ a_1\cdot r^{i-1}\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad &#10;\begin{cases}&#10;n=n^{th}\ term\\&#10;a_1=\textit{first term's value}\\&#10;r=\textit{common ratio}\\&#10;----------\\&#10;r=-2\\&#10;n=6\\&#10;S_6=-105&#10;\end{cases}

\bf -105=a_1\left( \cfrac{1-(-2)^6}{1-(-2)} \right)\implies -105=a_1\left( \cfrac{1-(64)}{1+2} \right)&#10;\\\\\\&#10;-105=a_1\left( \cfrac{-63}{3} \right)\implies -105=a_1(-21)&#10;\\\\\\&#10;\cfrac{-105}{-21}=a_1\implies 5=a_1
7 0
3 years ago
Other questions:
  • Which values represent the dependent variable? (2,3) (2,-2) (-4,-2) (-2,2) A. {–4, –2, 2} B. {–4, 2, 3} C. {–4, –2, 3} D. {–2, 2
    9·1 answer
  • If rain is falling at a rate of ¼ inch per hour, how much rain would you expect after 6 hours
    10·1 answer
  • What is 1,000,000 written as a power of ten?
    12·1 answer
  • Do the measures of center make​ sense? A. Only the mode makes sense since the data is nominal. B. All the measures of center mak
    7·1 answer
  • If the dimensions of a circle are tripled, the area of the resulting circle will also be three times larger.
    15·1 answer
  • Please help with the following questions
    6·1 answer
  • If B is the midpoint of AC, AB = 6x + 1 and BC = 3x + 10, then what is the length of AC?
    7·1 answer
  • Ali was asked to factorise x^2y^2 + 36 - 4x^2 - 9y^2.He tried some ways of grouping terms as shown below.
    15·1 answer
  • A travel agent receives a 9% commission on the base fair of a customer- that is the fair before sales tax is added if the total
    6·1 answer
  • What is the mean of 46, 37, 34, 31, 29, and 24?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!