<span>To solve these GCF and LCM problems, factor the numbers you're working with into primes:
3780 = 2*2*3*3*3*5*7
180 = 2*2*3*3*5
</span><span>We know that the LCM of the two numbers, call them A and B, = 3780 and that A = 180. The greatest common factor of 180 and B = 18 so B has factors 2*3*3 in common with 180 but no other factors in common with 180. So, B has no more 2's and no 5's
</span><span>Now, LCM(180,B) = 3780. So, A or B must have each of the factors of 3780. B needs another factor of 3 and a factor of 7 since LCM(A,B) needs for either A or B to have a factor of 2*2, which A has, and a factor of 3*3*3, which B will have with another factor of 3, and a factor of 7, which B will have.
So, B = 2*3*3*3*7 = 378.</span>
So x + y = 45, and 4x + 5y = 195. Get y by itself. Subtract x from both sides in the first equation to get y = 45 -x, and subtract 4x from the second equation to get 5y = 195 - 4x. Divide by 5 to both sides to get y = 39 - 4/5x. 39 - 4/5x = 45 - x. Add x to both sides to get 39 - 1/5x = 45. Subtract 39 from both sides to get -1/5x = 6. Divide by -1/5 to get x = -30, or 30. In the first equation, do 30 + y = 45. Subtract 30 from both sides to get y = 15. Check. 4(30) + 15(5) = 195, or 120 + 75 = 195.
40/3 or 13.333333- your welcome