1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry_Shevchenko [17]
3 years ago
5

On a certain​ route, an airline carries 5000 passengers per​ month, each paying ​$60. A market survey indicates that for each​ $

1 increase in the ticket​ price, the airline will lose 50 passengers. Find the ticket price that will maximize the​ airline's monthly revenue for the route. What is the maximum monthly​ revenue?
Mathematics
1 answer:
Liono4ka [1.6K]3 years ago
4 0

Answer:

$320000

Step-by-step explanation:

Given that on a certain route, an airline carries 5000 passengers per​ month, each paying ​$60.

A market survey indicates that for each​ $1 increase in the ticket​ price, the airline will lose 50 passengers

Let 1 dollar be increased x times (say)

Original revenue = 60(5000) =300000

After increase of x dollars, revenue would be a function of x

R(x) = R(x) =(60+x) (5000-50x)\\\\R(x) = 300000+2000x-50x^2

Use derivative test to find maximum

R(x) = 300000+2000x-50x^2\\R'(x) = 2000-100x\\R"(x) = -100

So maximum when I derivative is 0

i.e. when x = 20

Maximum revenue

R(20) = (60+20)(5000-1000)\\= 320000

You might be interested in
Help me plz u will make my day
oksian1 [2.3K]

Answer:

18 1/3. You add 18 1/3 to cancel out that number.

Step-by-step explanation:

5 0
3 years ago
Help pls will mark brainliest
Viktor [21]

Answer:

kitchi kitch ya ya da da

Step-by-step explanation:

4 0
2 years ago
6=4y+2 what is the answer
blagie [28]
Answer: 1 = y
All you have to do is carry the 2 over and subtract it from 6 so then you just have 4=4y which will turn into 1=y
6 0
3 years ago
Solve this application problem using a system of equations: Dan and June mix two kinds of feed for pedigreed dogs. They wish to
wlad13 [49]

Answer:

50 pounds

Step-by-step explanation:

Dan and june mix two kind of feed for pedigreed dogs

Feed A worth is $0.26 per pound

Feed B worth is $0.40 per pound

Let x represent the cheaper amount of feed and y the costlier type of feed

x+y= 70..........equation 1

0.26x + 0.40y= 0.30×70

0.26x + 0.40y= 21.........equation 2

From equation 1

x + y= 70

x= 70-y

Substitutes 70-y for x in equation 2

0.26(70-y) + 0.40y= 21

18.2-0.26y+0.40y= 21

18.2+0.14y= 21

0.14y= 21-18.2

0.14y= 2.8

Divide both sides by the coefficient of y which is 0.14

0.14y/0.14= 2.8/0.14

y= 20

Substitute 20 for y in equation 1

x + y= 70

x + 20= 70

x= 70-20

x = 50

Hence Dan and june should use 50 pounds of the cheaper kind in the mix

4 0
3 years ago
What is the area of the composite figure? (use 3.14 for pi). Explain how you arrived at your answer. Please round to the nearest
maksim [4K]

The area of the given diagram is 29.817 square centimeters. The given diagram is combination of rectangle and semi circle.

Step-by-step explanation:

The given is,

                 Given diagram is combination of Rectangle and Semi circle.

Step:1

         Res the attachment,

                      Area of given diagram = Area of A + Area of B..............(1)

Step:2

         For A,

         The A section in the given diagram is semi circle,

                     Diameter of semi circle = Total distance - ( 2+3)

                                          ( ∵ 2, 3 are top distance in the given diagram)

                                                             = 10 - 5

                                        Diameter, d = 5 cm

                                             Radius, r = \frac{d}{2}

                                                          r = \frac{5}{2}

                                                         r = 2.5 cm

                                          Area, A_{A}  = \frac {\pi r^{2} }{2}........................(2)

                                                    A_{A}  = \frac {\pi (2.5)^{2} }{2}  

                                                           = \frac {\pi ( 6.25) }{2}

                                                           = \frac{19.63}{2}

                                                     A_{A} = 9.8174 cm^{2}

Step:3

               For B,

               Area of rectangle is,

                                                      A_{B} =lb.....................(3)

              Where, l - Length = 10 cm

                          b - Width = 2 cm

              Equation (3) become,

                                                            = (10)(2)

                                                            = 20

                                    Area of B, A_{B} = 20 cm^{2}

Step:4

               From the equation (1),

                               Area of given diagram = 20+ 9.81747

                                                            Area = 29.817 square centimeters

Result:

            The area of the given diagram is 29.817 square centimeters. The given diagram is combination of rectangle and semi circle.

5 0
3 years ago
Other questions:
  • 16k-100k polynomial
    6·1 answer
  • What’s the correct answer
    5·2 answers
  • Y squared plus 7y plus 10 over y squared minus 25
    15·1 answer
  • find the length of CD.
    10·1 answer
  • A triangle has three angles of 36°, 34° and 110°.
    9·1 answer
  • Please Help Me! Find the missing length indicated. Leave your answer in simplest radical form.
    5·1 answer
  • A point is reflected across the x-axis. The new point is located at (4.75, -2.25) Where was the original point located.
    13·1 answer
  • Mary bought 10 notebooks that each cost the same amount. She paid with a $100 bill and receive $13 dollars in change a. Write an
    11·2 answers
  • Mark<br> used 6428 blocks build a castle round the number of block to the nearest tens
    10·1 answer
  • Using elimination, solve<br><br>-12x + 9y = 7<br>9x ÷ 12y = 6​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!