This question is incomplete, the complete question is;
Flag
A constant force F = 6i+8j-6k moves an object along a straight line from point (6, 0, -10) to point (-6, 7, 2).
Find the work done if the distance is measured in meters and the magnitude of the force is measured in newtons.
Answer:
the work done is -88 J
Explanation:
Given the data in the question;
we know that;
Work done = F × S
where constant force F = ( 6i + 8j - 6k )
S = ( -6i + 7j + 2k ) - ( 6i + 0j - 10k )
S = ( (-6i - 6i) + (7j - 0j) + ( 2k - ( -10k) ) )
S = ( -12I + 7j + 12k )
so
Work force = ( 6i + 8j - 6k ) × ( -12I + 7j + 12k )
Work force = ( 6 × -12 ) + ( 8 × 7 ) + ( -6 × 12 )
Work force = -72 + 56 - 72
Work force = -88 J
Therefore, the work done is -88 J
Answer:
E. An object’s velocity changes at a constant rate, and its acceleration remains constant.
Explanation:
When an object is in freefall, it implies that the object is falling freely under gravity. If it falls towards the earth surface, the fall is in the direction of the Earth's gravitational force.
At the point of release of the object, its initial velocity is zero because it is at rest. But when released, its velocity increases at a constant rate until it is acted upon by an external force. But its acceleration remains constant, acceleration due to gravity.
The resistance of a wire is given by

where

is the resistivity of the material, L the length of the wire and A its cross-sectional area.
In the problem,

and L remain the same, while A changes because the radius changes. The area is given by:

This means that if we double the radius (2r), the area becomes

And therefore, the new value of the resistance is

So, when the radius is doubled, the resistance becomes

of its original value.
1) the sun (greek name Helios gives heliocentric)
2) A. Newton's laws of motion can prove this as well as Kepler's Laws
3) D. Inertia keeps it from falling onto the sun and gravity keeps it from going off in a straight line
4) moons. They orbit planets not suns directly
5) B (International Space Station gives a hint)
Answer:
the sample is approximately 4065 years old