Answer:
i hope the answear is D becuase went over this long time ago when i was like you
Explanation:
"B" When an object moves away from us, the light is shifted to the red end of the spectrum, as its wavelengths get longer.
Answer:
True The net force must be zero for the acceleration to be zero
Explanation:
In order to analyze the statements of this problem we propose your solution.
First let's look at Newton's first, which stable that every object is at rest or with constant speed unless something takes it out of this state (acceleration)
Now let's look at the second postulate, which says that force is related to the product of the mass of a body and its acceleration.
As a result of these two laws, for a body is a constant velocity the summation force on it must be zero.
Now we can analyze the statements given.
True The net force must be zero for the acceleration to be zero
False. If the force is different from zero, there is acceleration that changes the speeds
False. There may be forces, but the sum of them must be zero
False. If a force acts, the acceleration is different from zero and the speed changes
Answer:

Explanation:
The frequency of a wave can be found using the following formula.

where <em>f</em> is the frequency, <em>v</em> is the velocity/wave speed, and λ is the wavelength.
The wavelength is 10 meters and the velocity is 200 meters per second.
- 1 m/s can also be written as 1 m*s^-1
Therefore:

Substitute the values into the formula.

Divide and note that the meters (m) will cancel each other out.


- 1 s^-1 is equal to Hertz
- Therefore, our answer of 20 s^-1 is equal to 20 Hz

The frequency of the wave is <u>20 Hertz</u>