Answer:
384.780390296928 feetThis value is approximate. Round it however you need to.
-------------------------------------------------------
-------------------------------------------------------
Work Shown:
Refer to the attached image
Point A = initial observation point
Point B = new observation point
Point C = bottom of the hill (directly underneath point D)
Point D = top of the hill (directly overhead point C)
Segment lengths
AB = 350
BC = x
CD = y
AC = AB+BC = 350+x
The goal is to find the value of y.
----------------
tan(angle) = opposite/adjacent
tan(25) = CD/AB
tan(25) = y/(350+x)
(350+x)*tan(25) = y
y = (350+x)*tan(25)
y = (350+x)*0.466307658155
y = 350*0.466307658155+x*0.466307658155
y = 163.20768035425+0.466307658155x
y = 0.466307658155x+163.20768035425
tan(angle) = opposite/adjacent
tan(39) = CD/BC
tan(39) = y/x
tan(39) = (0.466307658155x+163.20768035425)/x
x*tan(39) = 0.466307658155x+163.20768035425
x*0.809784033195 = 0.466307658155x+163.20768035425
0.809784033195x-0.466307658155x = 163.20768035425
0.34347637504x = 163.20768035425
0.34347637504x/0.34347637504 = 163.20768035425/0.34347637504
x = 475.164209868127
Now use this x value to find y
y = 0.466307658155x+163.20768035425
y = 0.466307658155*475.164209868127+163.20768035425
y = 384.780390296928
Therefore, the hill is approximately
384.780390296928 feet tall.