There are two steps to this problem. The first step is to make an equation for the cost of each company. The cost of each one involves 2 variables. However, we can ignore the number of days since the question asks for per day.
CostA = 90 + .40(miles)
CostB = 30 + .70(miles)
We want to know when A is a better deal or when A costs less. That is when CostA < CostB. We can then substitute the right sides of our equations into the inequality. This will give:
90 + .40(miles) < 30 + .70(miles) This is where we will now begin to solve for the number of miles.
-30 -30 Subtract 30 from both sides.
60 + .4(miles) < .7(miles) Simplify
-.4(miles) -.4(miles) Subtract .4(miles) from both sides
60 < .3(miles) Simplify
/.3 /.3 Divide both sides by .3
200 < miles Simplify
So for A to cost less the number of miles must be greater than 200.
Answer:
If you meant [80 + (8*4) ]/2, then [80 + (8*4) ]/2=56
or if you meant 80 + [ 8*4 / 2], then 80 + [ 8*4 / 2] = 96
Step-by-step explanation:
Evalute the expression. 80 + (8x4) divided by 2
so do you mean
the whole expression 80 + (8x4) is over 2 ?
If so then:
evaluate 8x4 = 8 * 4 = 32.
so we have 80 + (8x4) is over 2 = (80 + 32)/2 = 112/2 = 56
If you meant 80 + [ 8*4 / 2]
then 80 + [ 8*4 / 2] = 80 + 8*2 = 80 + 16 = 96
Step-by-step explanation:
first way by sitting 3 person in one chair
Cancel something
we cancel x's
multiply 1st equation by 5 and 2nd by 7 and add them
-35x-30y=-5
<u>35x-28y=7 +</u>
0x-58y=2
-58y=2
divide both sides by -58
y=-1/29
sub back
5x-4(-1/29)=1
5x+4/29=1
minus 4/29 from both sides
note, 1=29/29
5x=25/29
divide bot sides by 5 (or times 1/5)
x=5/29
(5/29,-1/29)
Step-by-step explanation:
1 Remove parentheses.
8{y}^{2}\times -3{x}^{2}{y}^{2}\times \frac{2}{3}x{y}^{4}
8y
2
×−3x
2
y
2
×
3
2
xy
4
2 Use this rule: \frac{a}{b} \times \frac{c}{d}=\frac{ac}{bd}
b
a
×
d
c
=
bd
ac
.
\frac{8{y}^{2}\times -3{x}^{2}{y}^{2}\times 2x{y}^{4}}{3}
3
8y
2
×−3x
2
y
2
×2xy
4
3 Take out the constants.
\frac{(8\times -3\times 2){y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
(8×−3×2)y
2
y
2
y
4
x
2
x
4 Simplify 8\times -38×−3 to -24−24.
\frac{(-24\times 2){y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
(−24×2)y
2
y
2
y
4
x
2
x
5 Simplify -24\times 2−24×2 to -48−48.
\frac{-48{y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
−48y
2
y
2
y
4
x
2
x
6 Use Product Rule: {x}^{a}{x}^{b}={x}^{a+b}x
a
x
b
=x
a+b
.
\frac{-48{y}^{2+2+4}{x}^{2+1}}{3}
3
−48y
2+2+4
x
2+1
7 Simplify 2+22+2 to 44.
\frac{-48{y}^{4+4}{x}^{2+1}}{3}
3
−48y
4+4
x
2+1
8 Simplify 4+44+4 to 88.
\frac{-48{y}^{8}{x}^{2+1}}{3}
3
−48y
8
x
2+1
9 Simplify 2+12+1 to 33.
\frac{-48{y}^{8}{x}^{3}}{3}
3
−48y
8
x
3
10 Move the negative sign to the left.
-\frac{48{y}^{8}{x}^{3}}{3}
−
3
48y
8
x
3
11 Simplify \frac{48{y}^{8}{x}^{3}}{3}
3
48y
8
x
3
to 16{y}^{8}{x}^{3}16y
8
x
3
.
-16{y}^{8}{x}^{3}
−16y
8
x
3
Done