Answer:
3n^2 AKA C would be the answer.
Step-by-step explanation:
Reason: any number 1-9 is a mononomial number. Coefficient of three just means to add a numerical or constant quantity placed before and multiplying the variable in an algebraic expression
Answer:
<h2>4 p.m.</h2>
Step-by-step explanation:
We know that a day contains 24 hours in total.
The time already passed will be represented by
.
The remaining time would be
, becasye half of what has already passed remains until the end of the day.
Basically, the sum of these two expression gives 24 hours in total.

Therefore, the actual time is 4 p.m.
A vertical line that the graph of a function approaches but never intersects. The correct option is B.
<h3>When do we get vertical asymptote for a function?</h3>
Suppose that we have the function f(x) such that it is continuous for all input values < a or > a and have got the values of f(x) going to infinity or -ve infinity (from either side of x = a) as x goes near a, and is not defined at x = a, then at that point, there can be constructed a vertical line x = a and it will be called as vertical asymptote for f(x) at x = a
A vertical asymptote can be described as a vertical line that the graph of a function approaches but never intersects.
Hence, the correct option is B.
Learn more about Vertical Asymptotes:
brainly.com/question/2513623
#SPJ1
Answer: t-half = ln(2) / λ ≈ 0.693 / λExplanation:The question is incomplete, so I did some research and found the complete question in internet.
The complete question is:
Suppose a radioactive sample initially contains
N0unstable nuclei. These nuclei will decay into stable
nuclei, and as they do, the number of unstable nuclei that remain,
N(t), will decrease with time. Although there is
no way for us to predict exactly when any one nucleus will decay,
we can write down an expression for the total number of unstable
nuclei that remain after a time t:
N(t)=No e−λt,
where λ is known as the decay constant. Note
that at t=0, N(t)=No, the
original number of unstable nuclei. N(t)
decreases exponentially with time, and as t approaches
infinity, the number of unstable nuclei that remain approaches
zero.
Part (A) Since at t=0,
N(t)=No, and at t=∞,
N(t)=0, there must be some time between zero and
infinity at which exactly half of the original number of nuclei
remain. Find an expression for this time, t half.
Express your answer in terms of N0 and/or
λ.
Answer:
1) Equation given:
← I used α instead of λ just for editing facility..
Where No is the initial number of nuclei.
2) Half of the initial number of nuclei:
N (t-half) = No / 2So, replace in the given equation:
3) Solving for α (remember α is λ)
αt ≈ 0.693
⇒ t = ln (2) / α ≈ 0.693 / α ← final answer when you change α for λ