1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ikadub [295]
3 years ago
8

The formula for the volume of a cube is V = s3, where s is the length of each side. What is the volume of a cube if each side me

asures 1/4 feet?
Mathematics
1 answer:
Whitepunk [10]3 years ago
6 0
The answer is 1






HHOPE THIS HELPS!!!!!!!
You might be interested in
Order the numbers from least to greatest. 3 and thirty nine fortieths, 3 and nineteen twentieths, 3 and one half.
Assoli18 [71]
3 39/40 = 3.975
3 19/20 = 3.95
3 1/2 = 3.5

least to greatest : 3 1/2, 3 19/20, 3 39/40
8 0
3 years ago
Anyone found this answer for this question?
Marianna [84]

Answer:

Where is the question

6 0
3 years ago
The sum of 12.6, 31, and 5.4 is greater then 20
Dmitry [639]

Answer:

49>20

Step-by-step explanation:

12.6 + 31 + 5.4 = 49 >20

5 0
3 years ago
Edna earns $6 for each hour of yard work. How many hours in all will it take Edna to earn<br> $42?
madreJ [45]

Answer:

42 divided by 6=7 so 7 hrs

Step-by-step explanation:

its probalay wrong im not smart lol

5 0
2 years ago
Read 2 more answers
If <img src="https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20x%20%3D%20log_%7Ba%7D%28bc%29" id="TexFormula1" title="\rm \: x = log_{a}(
timama [110]

Use the change-of-basis identity,

\log_x(y) = \dfrac{\ln(y)}{\ln(x)}

to write

xyz = \log_a(bc) \log_b(ac) \log_c(ab) = \dfrac{\ln(bc) \ln(ac) \ln(ab)}{\ln(a) \ln(b) \ln(c)}

Use the product-to-sum identity,

\log_x(yz) = \log_x(y) + \log_x(z)

to write

xyz = \dfrac{(\ln(b) + \ln(c)) (\ln(a) + \ln(c)) (\ln(a) + \ln(b))}{\ln(a) \ln(b) \ln(c)}

Redistribute the factors on the left side as

xyz = \dfrac{\ln(b) + \ln(c)}{\ln(b)} \times \dfrac{\ln(a) + \ln(c)}{\ln(c)} \times \dfrac{\ln(a) + \ln(b)}{\ln(a)}

and simplify to

xyz = \left(1 + \dfrac{\ln(c)}{\ln(b)}\right) \left(1 + \dfrac{\ln(a)}{\ln(c)}\right) \left(1 + \dfrac{\ln(b)}{\ln(a)}\right)

Now expand the right side:

xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} \\\\ ~~~~~~~~~~~~+ \dfrac{\ln(c)\ln(a)}{\ln(b)\ln(c)} + \dfrac{\ln(c)\ln(b)}{\ln(b)\ln(a)} + \dfrac{\ln(a)\ln(b)}{\ln(c)\ln(a)} \\\\ ~~~~~~~~~~~~ + \dfrac{\ln(c)\ln(a)\ln(b)}{\ln(b)\ln(c)\ln(a)}

Simplify and rewrite using the logarithm properties mentioned earlier.

xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} + \dfrac{\ln(a)}{\ln(b)} + \dfrac{\ln(c)}{\ln(a)} + \dfrac{\ln(b)}{\ln(c)} + 1

xyz = 2 + \dfrac{\ln(c)+\ln(a)}{\ln(b)} + \dfrac{\ln(a)+\ln(b)}{\ln(c)} + \dfrac{\ln(b)+\ln(c)}{\ln(a)}

xyz = 2 + \dfrac{\ln(ac)}{\ln(b)} + \dfrac{\ln(ab)}{\ln(c)} + \dfrac{\ln(bc)}{\ln(a)}

xyz = 2 + \log_b(ac) + \log_c(ab) + \log_a(bc)

\implies \boxed{xyz = x + y + z + 2}

(C)

6 0
2 years ago
Other questions:
  • Pls help being timed
    5·2 answers
  • Solve. 3w-4z=8 solve.2w+3z=-6
    12·1 answer
  • How do you solve 4377 divided by 8
    11·1 answer
  • Choose the best definitions of parameter and statistic. A statistic is a variable that describes a sample and a parameter is a v
    6·1 answer
  • What is the slope and Y intercept?
    8·2 answers
  • 7. Alyssa’s goal is to read one library book each week. On the first night, she read 10 pages more than 15 of the pages in the b
    11·1 answer
  • Simplify 8x + 4xy - 2y + 5xy - 3x + 7xy
    9·1 answer
  • I WILL MARK BRAINLIEST!!!
    7·1 answer
  • Which table represents a proportional relationship?
    15·1 answer
  • Combine like terms. y + 5e + 3y
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!