N 19)
angle (21x+6) is equal angle 90°-----> by alternate exterior angles
so
21x+6=90--------> 21x=84----------> x=4°
the answer N 19) is 4 degrees
N 20)
angle 75 is equal angle 11x-2-----> by corresponding angles
so
11x-2=75-----> 11x=77--------> x=7°
the answer N 20) is x=7 degrees
N 21)
angle 60 is equal angle (8x-4)------> by alternate interior angles
so
8x-4=60-----> 8x=64--------> x=64/8-----> x=8°
the answer N 21) is x=8 degrees
N 22)
angle (x+139) is equal to angle 132-----> by alternate interior angles
so
x+139=132-------> x=132-139--------> x=-7 °
the answer N 22) is x=-7 degrees
N 23)
angle (-1+14x) is equal to angle (12x+17)----> by alternate exterior angles
so
-1+14x=12x+17------> 14x-12x=17+1----> 2x=18----> x=9
the answer N 23) is x=9 degrees
N 24)
angle (23x-5) is equal to angle (21x+5)----> by corresponding angles
so
23x-5=21x+5-----> 23x-21x=5+5-----> 2x=10-----> x=5
the answer N 24) is x=5 degrees
N 25)
angle (x+96) and angle (x+96)-------> are supplementary angles
so
x+96+x+96=180--------->2x+192=180------> x=-6°
the angle indicated in bold is (-6+96)=90°
N 26)
angle (20x+5) and angle (24x-1)-------> are supplementary angles
so
20x+5+24x-1=180------> 44x=176-----> x=4°
the angle indicated in bold is (20*4+5)=85°
N 27)
angle (6x) is equal to angle (5x+10)--------> by corresponding angles
so
6x=5x+10------> 6x-5x=10------> x=10
the angle indicated in bold is (6*10)=60°
N 28)
angle (x+109) and angle (x+89) are supplementary angles
so
x+109+x+89=180----> 2x=-18-------> x=-9
the angle indicated in bold is (x+89)----> -9+89=80°
Answer:
The answer is D. 38360
Step-by-step explanation:
Diagonal = SQRT(8^2 + 12^2 + 30^2)
Diagonal = SQRT(64 + 144 + 900)
Diagonal = SQRT(1108)
Diagonal = 33.3 feet
Step-by-step explanation:
Draw diagonal AC
The triangle ABC has sides 17 and 25
Say AB is 17, BC is 25
Draw altitude on side BC from A , say h
h = 17 sin B
Area = 25*17 sin B = 408
sin B = 24/25
In ∆ ABC
Cos B = +- 7/25
= 625 + 289 — b^2 / 2*25*17
b^2 = 914 — 14*17 = 676
b = 26
h = 17*24/25 = 408/25 = 16.32
Draw the second diagonal BD
In ∆ BCD, draw altitude from D, say DE =h
BD^2 = h^2 + {(25 + sqrt (289 -h^2) }^2
BD^2 = 16.32^2 + (25 + 4.76)^2
= 885.6576 + 266.3424
BD = √ 1152 = 33.94 m
You can determine the shape if it is a triangle, square, rectangle, or hexagon (or other) by seeing how many sides it has.
a triangle has 3 sides.
a square has 4 sides.
a rectangle also has 4 sides.
a pentagon has 5 sides.
a hexagon has 6 sides.