1. Find the greatest common factor (GCF)
What is the largest number that divides evenly into 4x^2, -16x^4, and 10x^5?
It is 2.
What is the highest degree of x that divides evenly into 4x^2, -16x^4, and 10x^5?
It is x^2.
Multiply the results above, the GCF = 2x^2
2. Factor out the GCF (Write the GCF first. Then, in parentheses, divide each term by the GCF.)
2x^2(4x^2/2x^2 + -16x^4/2x^2 + 10x^5/2x^2)
3. Simplify each term in parentheses
2x(2-8x^2+5x^3)
Have a nice day :D
Answer:

Step-by-step explanation:
we know that
The <u><em>conjugate root theorem</em></u> states that if the complex number a + bi is a root of a polynomial P(x) in one variable with real coefficients, then the complex conjugate a - bi is also a root of that polynomial
In this problem we have that
The polynomial has roots 1 and (1+i)
so
by the conjugate root theorem
(1-i) is also a root of the polynomial
therefore
The lowest degree of the polynomial is 3
so

Remember that
The leading coefficient is 1
so
a=1
![f(x)=(x-1)(x-(1+i))(x-(1-i))\\\\f(x)=(x-1)[x^{2} -(1-i)x-(1+i)x+(1-i^2)]\\\\f(x)=(x-1)[x^{2} -x+xi-x-xi+2]\\\\f(x)=(x-1)[x^{2} -2x+2]\\\\f(x)=x^{3}-2x^{2} +2x-x^{2} +2x-2\\\\f(x)=x^{3}-3x^{2} +4x-2](https://tex.z-dn.net/?f=f%28x%29%3D%28x-1%29%28x-%281%2Bi%29%29%28x-%281-i%29%29%5C%5C%5C%5Cf%28x%29%3D%28x-1%29%5Bx%5E%7B2%7D%20-%281-i%29x-%281%2Bi%29x%2B%281-i%5E2%29%5D%5C%5C%5C%5Cf%28x%29%3D%28x-1%29%5Bx%5E%7B2%7D%20-x%2Bxi-x-xi%2B2%5D%5C%5C%5C%5Cf%28x%29%3D%28x-1%29%5Bx%5E%7B2%7D%20-2x%2B2%5D%5C%5C%5C%5Cf%28x%29%3Dx%5E%7B3%7D-2x%5E%7B2%7D%20%2B2x-x%5E%7B2%7D%20%2B2x-2%5C%5C%5C%5Cf%28x%29%3Dx%5E%7B3%7D-3x%5E%7B2%7D%20%2B4x-2)
Step-by-step explanation:
- 3over4 which is 75percent