A. m < 125° is the answer
when added together the two angles must be less than 180 degrees.
when you subtract 55° from 180° you get 125° so you know the angle must be less than 125° since 125° + 55° = 180°
Answer:
there are 11 big-bags and 24 small-bags.
Step-by-step explanation:
there are x big-bags and y small-bags.
so now we can know:
(1) x + y = 35
(2) 12x + 7y = 300
in (1),we can do like this:
both left and right x7
then (x + y)x7 = 35 x 7
then 7x + 7y = 35 x 7
then 7x + 7y = 245
now,
(1)7x + 7y =245
(2)12x + 7y = 300
we can both left and right do this: (2) - (1)
then
(12x + 7y) - (7x + 7y) = 300 -245
then
12x + 7y - 7x - 7y = 300 -245
then
12x - 7x +7y - 7y =300 -245
then
5x =55
then
5x ÷ 5 = 55 ÷ 5
then
x = 11
because
x + y =35;x=11
so
11 + y =35
11+ y -11 = 35 -11
then
y = 24
now we know:there are 11 big-bags and 24 small-bags.
Answer:
b = 15.75
Step-by-step explanation:
Lets find the interception points of the curves
36 x² = 25
x² = 25/36 = 0.69444
|x| = √(25/36) = 5/6
thus the interception points are 5/6 and -5/6. By evaluating in 0, we can conclude that the curve y=25 is above the other curve and b should be between 0 and 25 (note that 0 is the smallest value of 36 x²).
The area of the bounded region is given by the integral

The whole region has an area of 250/9. We need b such as the area of the region below the curve y =b and above y=36x^2 is 125/9. The region would be bounded by the points z and -z, for certain z (this is for the symmetry). Also for the symmetry, this region can be splitted into 2 regions with equal area: between -z and 0, and between 0 and z. The area between 0 and z should be 125/18. Note that 36 z² = b, then z = √b/6.

125/18 = b^{1.5}/9
b = (62.5²)^{1/3} = 15.75
Answer:
B
Step-by-step explanation: