Answer:
![\Huge\boxed {x = 15}](https://tex.z-dn.net/?f=%5CHuge%5Cboxed%20%7Bx%20%3D%2015%7D)
Step-by-step explanation:
⟾Collect like terms
⟾Move the variable to the left
⟾Collect like terms again
⟾Divide both sides by -3
⟾ x = 45 ÷ 3
Hope it's helps you
It's a computation. It would be 8!/3!(8-3)! If my memory serves me correctly.
Answer:
Therefore, the inverse of given matrix is
![=\begin{pmatrix}\frac{2}{5}&-\frac{1}{5}\\ -\frac{1}{5}&\frac{4}{15}\end{pmatrix}](https://tex.z-dn.net/?f=%3D%5Cbegin%7Bpmatrix%7D%5Cfrac%7B2%7D%7B5%7D%26-%5Cfrac%7B1%7D%7B5%7D%5C%5C%20-%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B4%7D%7B15%7D%5Cend%7Bpmatrix%7D)
Step-by-step explanation:
The inverse of a square matrix
is
such that
where I is the identity matrix.
Consider, ![A = \left[\begin{array}{ccc}4&3\\3&6\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%263%5C%5C3%266%5Cend%7Barray%7D%5Cright%5D)
![\mathrm{Matrix\:can\:only\:be\:inverted\:if\:it\:is\:non-singular,\:that\:is:}](https://tex.z-dn.net/?f=%5Cmathrm%7BMatrix%5C%3Acan%5C%3Aonly%5C%3Abe%5C%3Ainverted%5C%3Aif%5C%3Ait%5C%3Ais%5C%3Anon-singular%2C%5C%3Athat%5C%3Ais%3A%7D)
![\det \begin{pmatrix}4&3 \\3&6\end{pmatrix}\ne 0](https://tex.z-dn.net/?f=%5Cdet%20%5Cbegin%7Bpmatrix%7D4%263%20%5C%5C3%266%5Cend%7Bpmatrix%7D%5Cne%200)
![\mathrm{Find\:2x2\:matrix\:inverse\:according\:to\:the\:formula}:\quad \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}^{-1}=\frac{1}{\det \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}}\begin{pmatrix}d\:&\:-b\:\\ -c\:&\:a\:\end{pmatrix}](https://tex.z-dn.net/?f=%5Cmathrm%7BFind%5C%3A2x2%5C%3Amatrix%5C%3Ainverse%5C%3Aaccording%5C%3Ato%5C%3Athe%5C%3Aformula%7D%3A%5Cquad%20%5Cbegin%7Bpmatrix%7Da%5C%3A%26%5C%3Ab%5C%3A%5C%5C%20c%5C%3A%26%5C%3Ad%5C%3A%5Cend%7Bpmatrix%7D%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B%5Cdet%20%5Cbegin%7Bpmatrix%7Da%5C%3A%26%5C%3Ab%5C%3A%5C%5C%20c%5C%3A%26%5C%3Ad%5C%3A%5Cend%7Bpmatrix%7D%7D%5Cbegin%7Bpmatrix%7Dd%5C%3A%26%5C%3A-b%5C%3A%5C%5C%20-c%5C%3A%26%5C%3Aa%5C%3A%5Cend%7Bpmatrix%7D)
![=\frac{1}{\det \begin{pmatrix}4&3\\ 3&6\end{pmatrix}}\begin{pmatrix}6&-3\\ -3&4\end{pmatrix}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B%5Cdet%20%5Cbegin%7Bpmatrix%7D4%263%5C%5C%203%266%5Cend%7Bpmatrix%7D%7D%5Cbegin%7Bpmatrix%7D6%26-3%5C%5C%20-3%264%5Cend%7Bpmatrix%7D)
![\mathrm{Find\:the\:matrix\:determinant\:according\:to\:formula}:\quad \det \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}\:=\:ad-bc](https://tex.z-dn.net/?f=%5Cmathrm%7BFind%5C%3Athe%5C%3Amatrix%5C%3Adeterminant%5C%3Aaccording%5C%3Ato%5C%3Aformula%7D%3A%5Cquad%20%5Cdet%20%5Cbegin%7Bpmatrix%7Da%5C%3A%26%5C%3Ab%5C%3A%5C%5C%20c%5C%3A%26%5C%3Ad%5C%3A%5Cend%7Bpmatrix%7D%5C%3A%3D%5C%3Aad-bc)
![4\cdot \:6-3\cdot \:3=15](https://tex.z-dn.net/?f=4%5Ccdot%20%5C%3A6-3%5Ccdot%20%5C%3A3%3D15)
![=\frac{1}{15}\begin{pmatrix}6&-3\\ -3&4\end{pmatrix}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B15%7D%5Cbegin%7Bpmatrix%7D6%26-3%5C%5C%20-3%264%5Cend%7Bpmatrix%7D)
![=\begin{pmatrix}\frac{2}{5}&-\frac{1}{5}\\ -\frac{1}{5}&\frac{4}{15}\end{pmatrix}](https://tex.z-dn.net/?f=%3D%5Cbegin%7Bpmatrix%7D%5Cfrac%7B2%7D%7B5%7D%26-%5Cfrac%7B1%7D%7B5%7D%5C%5C%20-%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B4%7D%7B15%7D%5Cend%7Bpmatrix%7D)
Therefore, the inverse of given matrix is
![=\begin{pmatrix}\frac{2}{5}&-\frac{1}{5}\\ -\frac{1}{5}&\frac{4}{15}\end{pmatrix}](https://tex.z-dn.net/?f=%3D%5Cbegin%7Bpmatrix%7D%5Cfrac%7B2%7D%7B5%7D%26-%5Cfrac%7B1%7D%7B5%7D%5C%5C%20-%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B4%7D%7B15%7D%5Cend%7Bpmatrix%7D)
I divided the whole number by 2 and that was 1445 and then divided 1445 by 2.50 which was 578 and did the same thing except divided by 7.50 so its 578 kids and 192 adults
You're asking for three consecutive odd numbers, then
Let, the numbers = x, x+2, x+4
It is given that, x + x+2+ x+4 = -27
3x + 6 = -27
3x = -27 - 6
x = -33/3
x = -11
Then, x+2 = -9 & x+4 = -7
In short, Your Numbers would be: -7, -9,-11
Hope this helps!