1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgesh-ka [11]
3 years ago
7

Help me what is 6x4 and 3x6

Mathematics
1 answer:
Taya2010 [7]3 years ago
7 0

6 x 4= 24

3 x 6= 18

Hope this helps!!

You might be interested in
Evalua 6+x cuando x=3​
Gala2k [10]

Answer:

6+3=9

Step-by-step explanation:

Evaluando 6+3=9, porque tu tienes que intercambiar x por 3 porque x es 3. Después tu tienes que buscar tu repuesta. Disculpa mi español no es tan bueno escribiendo

6 0
3 years ago
(X^2+y^2+x)dx+xydy=0<br> Solve for general solution
aksik [14]

Check if the equation is exact, which happens for ODEs of the form

M(x,y)\,\mathrm dx+N(x,y)\,\mathrm dy=0

if \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}.

We have

M(x,y)=x^2+y^2+x\implies\dfrac{\partial M}{\partial y}=2y

N(x,y)=xy\implies\dfrac{\partial N}{\partial x}=y

so the ODE is not quite exact, but we can find an integrating factor \mu(x,y) so that

\mu(x,y)M(x,y)\,\mathrm dx+\mu(x,y)N(x,y)\,\mathrm dy=0

<em>is</em> exact, which would require

\dfrac{\partial(\mu M)}{\partial y}=\dfrac{\partial(\mu N)}{\partial x}\implies \dfrac{\partial\mu}{\partial y}M+\mu\dfrac{\partial M}{\partial y}=\dfrac{\partial\mu}{\partial x}N+\mu\dfrac{\partial N}{\partial x}

\implies\mu\left(\dfrac{\partial N}{\partial x}-\dfrac{\partial M}{\partial y}\right)=M\dfrac{\partial\mu}{\partial y}-N\dfrac{\partial\mu}{\partial x}

Notice that

\dfrac{\partial N}{\partial x}-\dfrac{\partial M}{\partial y}=y-2y=-y

is independent of <em>x</em>, and dividing this by N(x,y)=xy gives an expression independent of <em>y</em>. If we assume \mu=\mu(x) is a function of <em>x</em> alone, then \frac{\partial\mu}{\partial y}=0, and the partial differential equation above gives

-\mu y=-xy\dfrac{\mathrm d\mu}{\mathrm dx}

which is separable and we can solve for \mu easily.

-\mu=-x\dfrac{\mathrm d\mu}{\mathrm dx}

\dfrac{\mathrm d\mu}\mu=\dfrac{\mathrm dx}x

\ln|\mu|=\ln|x|

\implies \mu=x

So, multiply the original ODE by <em>x</em> on both sides:

(x^3+xy^2+x^2)\,\mathrm dx+x^2y\,\mathrm dy=0

Now

\dfrac{\partial(x^3+xy^2+x^2)}{\partial y}=2xy

\dfrac{\partial(x^2y)}{\partial x}=2xy

so the modified ODE is exact.

Now we look for a solution of the form F(x,y)=C, with differential

\mathrm dF=\dfrac{\partial F}{\partial x}\,\mathrm dx+\dfrac{\partial F}{\partial y}\,\mathrm dy=0

The solution <em>F</em> satisfies

\dfrac{\partial F}{\partial x}=x^3+xy^2+x^2

\dfrac{\partial F}{\partial y}=x^2y

Integrating both sides of the first equation with respect to <em>x</em> gives

F(x,y)=\dfrac{x^4}4+\dfrac{x^2y^2}2+\dfrac{x^3}3+f(y)

Differentiating both sides with respect to <em>y</em> gives

\dfrac{\partial F}{\partial y}=x^2y+\dfrac{\mathrm df}{\mathrm dy}=x^2y

\implies\dfrac{\mathrm df}{\mathrm dy}=0\implies f(y)=C

So the solution to the ODE is

F(x,y)=C\iff \dfrac{x^4}4+\dfrac{x^2y^2}2+\dfrac{x^3}3+C=C

\implies\boxed{\dfrac{x^4}4+\dfrac{x^2y^2}2+\dfrac{x^3}3=C}

5 0
3 years ago
Simplify the difference.<br> (7w2 – 7w – 8) – (5w2 + 2w – 3)
77julia77 [94]
Answer= 2w2-9w-5

Hope this helps
5 0
3 years ago
Read 2 more answers
2x-1/3=5 what are the solutions
asambeis [7]
Solution is (2.667,0) but x=2.667

6 0
2 years ago
Answer the question pls
masha68 [24]

Answer:

f=54

Step-by-step explanation:

ma is m times a 3x18= 54

6 0
2 years ago
Read 2 more answers
Other questions:
  • Evaluate 3(m^2-2) when m=1.5
    10·1 answer
  • The set of ordered pairs in the graph below can be described as which of the following? A. a relation B. a function C. a relatio
    13·1 answer
  • PLEASE HELP ASAP, I also have other questions i need help with
    9·1 answer
  • Please Help I will mark Brainliest or whatever Match each function formula with the corresponding transformation of the parent f
    10·1 answer
  • The expression 1/4y+3/8 factored is
    6·1 answer
  • Se repartió una suma de dinero entre tres personas; la segunda recibió x pesos mas que la primera, la tercera b pesos más que la
    6·1 answer
  • What is the measure of
    10·1 answer
  • DUE IN 10 MINUTES PLEASE HELP
    6·1 answer
  • Can anybody solve this with explanation<br> 12600 × 11/10 × 11/10
    9·1 answer
  • Which equation matches the graph? A. y-2=3(x-2) B. y-2=3(x+2) C. y+2=-3(x+2) d. y-2=-3(x-2)
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!