There are exactly (a). 10.0 and (b). 28.0
Answer:
Option c: Possible electron energy states are quantized within an atom.
Explanation:
The Bohr's Model of the hydrogen atom consisted of the movements of the electrons around the positively-charged nucleus in circular orbits that have a certain energy state. The energy of that orbit is given by:

<em>Where:</em>
E(n): is the energy of an electron in a particular orbit
R: is the Rydberg constant
h: is the Plank constant
c: is the speed of light
n: is a positive integer which corresponds to the number of the orbit
The ground state energy of a electron in the hydrogen atom is equal to -13,6 eV.
Bohr's Model aims to propose that the electron is restrictedly to occupy a certain region in the atom.
Therefore, the conclusion of Bohr after observing emission spectrum lines is that "possible electron energy states are quantized within an atom", so the correct option is c.
I hope it helps you!
Answer:
Explanation:
you need to change either the turn of the jump or push off higher or lower from the wall
Answer:
n = 12.18 moles
Explanation:
Given that,
The volume of a canister, V = 1 L
The temperature of the canister, T = 100 K
Pressure, P = 100 atm
We need to find the number of moles of gas. Let there are n number of moles. We know that,
PV = nRT
Where
R is gas constant, R = 0.0821 L*atm/mol*K

Hence, there are 12.18 moles of gas.
The answer is transition metals.