Answer:
30 3/8
Step-by-step explanation:
Answer:
h = 17.65 m
Step-by-step explanation:
The given equation gives the speed at impact :

h is height form where the object is dropped
Put v = 18.6 m/s in the above equation.

So, the object must be dropped from a height of 17.65 m.
Basically, what this asks you is to maximize the are A=ab where a and b are the sides of the recatangular area (b is the long side opposite to the river, a is the short side that also is the common fence of both corrals). Your maximization is constrained by the length of the fence, so you have to maximize subject to 3a+b=450 (drawing a sketch helps - again, b is the longer side opposite to the river, a are the three smaller parts restricting the corrals)
3a+b = 450
b = 450 - 3a
so the maximization max(ab) becomes
max(a(450-3a)=max(450a-3a^2)
Since this is in one variable, we can just take the derivative and set it equal to zero:
450-6a=0
6a=450
a=75
Plugging back into b=450-3a yields
b=450-3*75
b=450-225
b=215
Hope that helps!
Answer:
The maximum height that the ball will reach is 81 ft
Step-by-step explanation:
Note that the tray of the ball is given by the equation of a parabola of negative main coefficient. Then, the maximum value for a parabola is at its vertex.
For an equation of the form

So
the t coordinate of the vertice is:

In this case the equation is:

So

Therefore


Finally the maximum height that the ball will reach is

