In the figure, Blueline is Line AB and Redline is target line.
You can see that the target line does not pass through (18,-8)
Step-by-step explanation:
In the figure, Blueline is Line AB and Redline is target line.
You can see that the target line does not pass through (18,-8)
Taking a bottom-left corner of the graph as (0,0)
Given Line AB,
Point A is located as (4,9)
Point B is located as (16,1)
The slope of AB is
The question says " Draw a line passes through C(13,12) and parallel to Line AB "
Now, Let the equation of the target line is y=mx + c
Where m=slope and c is the y-intercept
The target line is parallel to the line AB
The slope of the Target line = The slope of the Line AB
m=
We can write, the equation of the target line is
Also, the Target line is passing through C(13,12)
Point C satisfies the equation
Replacing the value
the equation of the target line is
It is also asked that if a line is extended , would it passes through the (18,-8)?
If a line passes through the point (18-,8) then, that point must satisfy the equation of a line
the equation of the target line is
Left land side is not equal to right hand side.
Therefore. a line does not pass through the point (18,-8)