Answer:
((2 x^2 + 1)^2)/(x^2)
Step-by-step explanation:
Simplify the following:
(2 x + 1/x)^2
Hint: | Put the fractions in 2 x + 1/x over a common denominator.
Put each term in 2 x + 1/x over the common denominator x: 2 x + 1/x = (2 x^2)/x + 1/x:
((2 x^2)/x + 1/x)^2
Hint: | Combine (2 x^2)/x + 1/x into a single fraction.
(2 x^2)/x + 1/x = (2 x^2 + 1)/x:
((2 x^2 + 1)/x)^2
Hint: | Distribute exponents over quotients in ((2 x^2 + 1)/x)^2.
Multiply each exponent in (2 x^2 + 1)/x by 2:
Answer: ((2 x^2 + 1)^2)/(x^2)
It is C because 4 pi r^2 is the surface area equation. 4 times 6 squared= 144. 144pi = surface area.
![\bf sin(x)[csc(x)-sin(x)]~~=~~cos^2(x) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ sin(x)\left[\cfrac{1}{sin(x)}-\cfrac{sin(x)}{1} \right]\implies \underline{sin(x)}\left[\cfrac{1-sin^2(x)}{\underline{sin(x)}} \right] \\\\\\ 1-sin^2(x)\implies cos^2(x)](https://tex.z-dn.net/?f=%5Cbf%20sin%28x%29%5Bcsc%28x%29-sin%28x%29%5D~~%3D~~cos%5E2%28x%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20sin%28x%29%5Cleft%5B%5Ccfrac%7B1%7D%7Bsin%28x%29%7D-%5Ccfrac%7Bsin%28x%29%7D%7B1%7D%20%5Cright%5D%5Cimplies%20%5Cunderline%7Bsin%28x%29%7D%5Cleft%5B%5Ccfrac%7B1-sin%5E2%28x%29%7D%7B%5Cunderline%7Bsin%28x%29%7D%7D%20%5Cright%5D%20%5C%5C%5C%5C%5C%5C%201-sin%5E2%28x%29%5Cimplies%20cos%5E2%28x%29)
recall again, sin²(θ) + cos²(θ) = 1.
Answer:
0.06 is 10 times as much as 0.006
Step-by-step explanation:
let the number be x
as per the condition 0.06 is 10 times as much as x.
Solve for x:
10 times as much as x represents as 
Then;
......[1]
Division property of equality states that you divide the same number to both sides of an equation.
divide by 10 to both sides in equation [1];

Simplify:
x = 0.006
Therefore, 0.06 is 10 times as much as 0.006