1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11111nata11111 [884]
3 years ago
12

I have two Law Of Sines Problems that I need to Help Solved! Please!!

Mathematics
1 answer:
Oksi-84 [34.3K]3 years ago
6 0

Answer:

From figure A

The value of ∠ B = 75.74°   ,  ∠ C = 70.26° and  AB = 27.37

From figure B

The value of ∠ A = 42.8°   ,  ∠ B = 106.2° and  AC = 30.04

Step-by-step explanation:

<u>Given first figure as :</u>

AC = 28.2

BC = 16.5

∠ A = 34°

Let AB = c

<u>From law of sines</u>

\dfrac{a}{Sin A} = \dfrac{b}{Sin B} = \dfrac{c}{Sin C}

Or, \dfrac{a}{Sin A} = \dfrac{b}{Sin B}

or, \dfrac{16.5}{Sin 34} = \dfrac{28.2}{Sin B}

Or,  29.506 =  \dfrac{28.2}{Sin B}

Or, Sin B =  \dfrac{28.2}{29.5}  

Or, Sin B = 0.955

∴  ∠B = Sin^{-1} 0.955

I.e∠ B = 75.74

Now, ∠ C = 180° - ( ∠A + ∠B )

Or, ∠ C = 180° - ( 34° + 75.74° )

Or, ∠ C = 70.26°

Now, Again

\dfrac{b}{Sin B} = \dfrac{c}{Sin C}

so,  \dfrac{28.2}{Sin 75.74} = \dfrac{c}{Sin 70.26}

Or,   \dfrac{28.2}{0.9691} = \dfrac{c}{0.9412}

Or, c = 29.09 × 0.9412

∴    c = 27.37

I.e AB = 27.37

Hence,  The value of ∠ B = 75.74°   ,  ∠ C = 70.26° and  AB = 27.37

<u>From figure second</u>

Given as :

AB = c= 12

BC = a = 16

∠ C = 31°

let AC = b

<u>From law of sines</u>

\dfrac{a}{Sin A} = \dfrac{b}{Sin B} = \dfrac{c}{Sin C}

Or, \dfrac{a}{SinA } = \dfrac{c}{Sin C}

or,  \dfrac{16}{Sin A} = \dfrac{12}{Sin 31}

or,  \dfrac{16}{Sin A} = \dfrac{12}{0.51}

Or, \dfrac{16}{Sin A} = 23.52

∴ Sin A = \dfrac{16}{23.52}

I.e Sin A = 0.68

Or,  ∠ A = Sin^{-1} 0.68

or,  ∠ A = 42.8°

Now,  ∠ B = 180° - ( 31° + 42.8° )

Or,  ∠ B = 106.2°

Now,  \dfrac{b}{Sin B} = \dfrac{c}{Sin C}

or,  \dfrac{b}{Sin 106.2} = \dfrac{16}{Sin 31}

Or, \dfrac{b}{0.96} = \dfrac{16}{0.51}

or, b = 31.3×0.96

∴ b = 30.04

Hence The value of ∠ A = 42.8°   ,  ∠ B = 106.2° and  AC = 30.04

Answer

You might be interested in
Show that (2xy3 + cos x)dx + (3x2 y2 − sin y)dy = 0 is exact, and find the solution. Find c if y(0) = π
Licemer1 [7]

We're looking for a solution of the form F(x,y)=C. By the chain rule, this solution should have total differential

\mathrm dF=\dfrac{\partial F}{\partial x}\,\mathrm dx+\dfrac{\partial F}{\partial y}\,\mathrm dy=0

and the equation is exact if the mixed second-order partial derivatives of Fare equal, i.e. \frac{\partial^2F}{\partial x\partial y}=\dfrac{\partial^2F}{\partial y\partial x}.

The given ODE is exact, since

\dfrac{\partial(2xy^3+\cos x)}{\partial y}=6xy^2

\dfrac{\partial(3x^2y^2-\sin y)}{\partial x}=6xy^2

Then

\dfrac{\partial F}{\partial x}=2xy^3+\cos x\implies F(x,y)=x^2y^3+\sin x+f(y)

\dfrac{\partial F}{\partial y}=3x^2y^2-\sin y=3x^2y^2+\dfrac{\mathrm df}{\mathrm dy}

\dfrac{\mathrm df}{\mathrm dy}=-\sin y\implies f(y)=\cos y+C

\implies x^2y^3+\sin x+\cos y=C

With y(0)=\pi, we get

\cos\pi=C\implies C=-1

\implies\boxed{x^2y^3+\sin x+\cos y=-1}

6 0
3 years ago
When z is divided by 6, the remainder is 4. What is the remain-der when z is divided by 2 ?
Aleksandr [31]

Answer:

12

Step-by-step explanation:

So first, when z is divded by 6 we get 4 left.

So an example for z could be 24.

(24 / 6 = 4)

When z is divded by 2, it would be 12

24 / 2 = 12

(I hope this helps and that you have a nice day!)

4 0
2 years ago
Vertical angles are supplementary, true or false?
beks73 [17]

Answer:

False

Step-by-step explanation:

Vertical angles are a pair of opposite angles created by intersecting lines. The Vertical Angles Theorem states that if two angles are vertical, then they are congruent.

4 0
3 years ago
Read 2 more answers
What is the value of -33 over 9+2
Nataly [62]

Answer:

11

Step-by-step explanation:

9

+ 2

<u> </u>

11

1 2 3 4 5 6 7 8 9 10 11

what the- to easy bro

7 0
2 years ago
Si elegimos un día de la semana al azar, ¿qué probabilidad hay de que sea fin de semana (ya sabemos que hay dos días…)?
irga5000 [103]

Answer:

La probabilidad que hay de que sea fin de semana es \frac{2}{7}

Step-by-step explanation:

La Probabilidad es la mayor o menor posibilidad de que ocurra un determinado suceso. En otras palabras, la probabilidad establece una relación entre el número de sucesos favorables y el número total de sucesos posibles. Entonces, la probabilidad de un suceso cualquiera A se define como el cociente entre el número de casos favorables (número de casos en los que puede ocurrir o no el suceso A) y el número total de casos posibles. Esta se denomina Ley de Laplace.

P(A)=\frac{numero de casos favorables}{numero de casos posibles}

En este caso:

  • número de casos favorables: 2 (cantidad de días del fin de semana)
  • número de casos posibles: 7 (cantidad de días totales en la semana)

Reemplazando:

P(A)= \frac{2}{7}

<u><em>La probabilidad que hay de que sea fin de semana es </em></u>\frac{2}{7}<u><em></em></u>

3 0
3 years ago
Other questions:
  • How do you solve this equation 19−4c=17
    12·1 answer
  • Use any method to work these out, but do NOT use a calculator.
    8·1 answer
  • Cory invests $4000 at 3.5%. How much will he have in 6 years if the interest is compounded monthly ?
    14·1 answer
  • A marching band with 75 members makes two rectangular marching formations. One rectangle has 6 rows and the other rectangle had
    11·1 answer
  • On average, Donna's Cafe has 84 customers, which represents 24% of the total approved occupancy by the fire department. a. What
    11·1 answer
  • A soda can is the shape of a cylinder. It has a diameter of 8 centimeters and a volume of 653.12 cm³. What is the lateral surfac
    9·1 answer
  • 6 + x when x equals 3
    12·2 answers
  • 0.252 divided by 4.2
    8·1 answer
  • What is 4.8 into cm?
    8·2 answers
  • 39/8 as a decimal... I've forgotten how to turn fractions into decimals ​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!