Answer: 0.25g<2.50.... g<10
Step-by-step explanation: Let us say that the number of gumballs bought is represented by the variable g. In this case, the question is asking how many gumballs can be bought without surpassing the price of $2.50. We know that each gumball is $0.25, therefore the number of gumballs we buy times $0.25 has to be less than $2.50. Hence, the inequality would be 0.25g<2.50. If we were to solve this then g<2.50/0.25-----> g<10. In conclusion, the number of gumballs you can buy has to be less than 10. Thank you!
28mi/1 hr = 28 mi/60 min = 1 mi/(60/28) min =
28 mi/hr = 28 mi/60 min since there are 60 min in 1 hr
1 mi/(60/28) min since you divide top and bottom of 28/60 by 28 to get
1 mi/(60/28) min = 1mi/(15/7) min = 1 mi/ 2 1/7 min
Answer:
292,466,875.95
Step-by-step explanation:
Answer:
x = -4 and -3
Step-by-step explanation:
factors to (x+4)(x+3)
to zero them is -4 and -3
Please mark me brainliest to help me get Ace rank
9 = 2(6) - b
9 = 12 - b
-3 = b