if we take 64 to be the 100%, how much is 6¼% off of it?
![\bf \begin{array}{ccll} amount&\%\\ \cline{1-2} 64&100\\ x&6\frac{1}{4} \end{array}\implies \cfrac{64}{x}=\cfrac{100}{6\frac{1}{4}}\implies \cfrac{64}{x}=\cfrac{\frac{100}{1}}{\frac{25}{4}}\implies \cfrac{64}{x}=\cfrac{100}{1}\cdot \cfrac{4}{25} \\\\\\ \cfrac{64}{x}=16\implies 64=16x\implies \cfrac{64}{16}=x\implies 4=x \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{it had}}{64}-\stackrel{\textit{leakage}}{4}\implies \stackrel{\textit{remaining}}{60}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bccll%7D%20amount%26%5C%25%5C%5C%20%5Ccline%7B1-2%7D%2064%26100%5C%5C%20x%266%5Cfrac%7B1%7D%7B4%7D%20%5Cend%7Barray%7D%5Cimplies%20%5Ccfrac%7B64%7D%7Bx%7D%3D%5Ccfrac%7B100%7D%7B6%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B64%7D%7Bx%7D%3D%5Ccfrac%7B%5Cfrac%7B100%7D%7B1%7D%7D%7B%5Cfrac%7B25%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B64%7D%7Bx%7D%3D%5Ccfrac%7B100%7D%7B1%7D%5Ccdot%20%5Ccfrac%7B4%7D%7B25%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B64%7D%7Bx%7D%3D16%5Cimplies%2064%3D16x%5Cimplies%20%5Ccfrac%7B64%7D%7B16%7D%3Dx%5Cimplies%204%3Dx%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bit%20had%7D%7D%7B64%7D-%5Cstackrel%7B%5Ctextit%7Bleakage%7D%7D%7B4%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bremaining%7D%7D%7B60%7D)
Answer:
1000 times
Step-by-step explanation:
To find out how many times 0.1 can fit into 100, we can just divide 100 by 0.1.
But, we first find out how many times can 1 fit into 100.
No. of times 1 fit into 100 = 100 / 1 = 100 times
Now we know 1 is 10 times of 0.1, so we multiply the above by 10,
so 100 * 10 = 1000 times.
Therefore 0.1 can fit into 100 a 1000 times.
Answer:10$
Step-by-step explanation:
you have to times 5 and 2 u will get do$
Answer:
Step-by-step explanation:
\mathrm{Multiply\:the\:numerator\:and\:denominator\:by:}\:100
\mathrm{Multiply\:the\:quotient\:digit}\:\left(0\right)\:\mathrm{by\:the\:divisor}\:505
\mathrm{Subtract}\:0\:\mathrm{from}\:23