Answer:
I can even see anything can you reupload your answer, please?
Step-by-step explanation:
You can do this using synthetic division, which is the easiest way. If x - 2 = 0, then x = 2. That 2 will go outside the "box" and the leading coefficients of the terms in the polynomial will go inside the "box". 2 (1 -3 -10 24). Bring down the first number, the
1. Multiply that 1 by the 2 to get 2. Put that 2 up under the -3 and add to get
-1. Multiply that -1 by the 2 to get -2. Put that =-2 up under the -10 and add to get
-12. Multiply that -12 by the 2 to get -24. Put the -24 up under the 24 and add to get 0. That means that x - 2 is a factor of the polynomial. What's left, the bolded numbers, are the coefficients of a new polynomial that is one degree less than the polynomial you started with. In other words, when we divide your polynomial by x-2, you get

.
Answer:
The required probability is 0.1.
Step-by-step explanation:
red balls = 3
yellow balls = 2
blue balls = 5
Selected balls = 5
Number of elemnets in sample space = 10 C 5 = 1260
Ways to choose 1 red ball and 4 other colours = (3 C 1 ) x (7 C 4) = 105
Ways to choose 5 balls of other colours = 7 C 5 = 21
So, the probability is
9514 1404 393
Answer:
$562,500 per hour
Step-by-step explanation:
The cost will be a minimum where C'(x) = 0.
C'(x) = 0.56x -0.7 = 0
x = 0.7/0.56 = 1.25
The cost at that production point is ...
C(1.25) = (0.28×1.25 -0.7)1.25 +1 = -0.35×1.25 +1 = 0.5625
The minimum production cost is $562,500 per hour for production of 1250 items per hour.
_____
<em>Additional comment</em>
This is different than the minimum cost <em>per item</em>. This level of production gives a per-item cost of $450. The minimum cost per item is $358.30 at a production level of 1890 per hour.
Answer:
y= -5/4
Step-by-step explanation:
download a app called math papa. it's a great cheat cheat for these types of problems