1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlada [557]
3 years ago
14

–4.8(6.3x – 4.18) = –58.56

Mathematics
1 answer:
Ksivusya [100]3 years ago
7 0

answer/work:

-4.8(6.3x - 4.18) = -58.56

-30.24x + 20.064 = -58.56

              -20.064    -20.064

_____________________

-30.24x = -78.624

______   _______

-30.24       -30.24

x = 2.6

<em>hope this helps! ❤ from peachimin</em>

You might be interested in
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
4 years ago
Read 2 more answers
What is the rectangular form of z = 6(cos((3pi)/4) + i sin((3pi)/4))
kvv77 [185]

Answer:

Z= -3 square root 2 + 3i square root 2

Step-by-step explanation:

4 0
3 years ago
Simply the expression
Rashid [163]

Answer:

12+27a

Step-by-step explanation:

3(4+9a)=3(4)+3(9a)=12+27a

6 0
2 years ago
Read 2 more answers
IM STUCC ON THIS ONE!! CAN YALL HELP!
salantis [7]

Answer:

Step-by-step explanation:

???????????

4 0
3 years ago
Find the value of x and y
Aleks04 [339]

Answer:

x=30

y=17

Step-by-step explanation:

We know that 6x+9 = 129  since they are vertical angles

6x+9 = 129

Subtract 9 from each side

6x+9 -9 =129-9

6x = 120

Divide by 6

6x/6 =120/6

x = 20

3y+129 =180  since they make a straight line and straight line are equal to 180 degrees

3y+129 =180

Subtract 129 from each side

3y+129-129=180-129

3y = 51

Divide by 3

3y/3 = 51/3

y = 17

6 0
3 years ago
Read 2 more answers
Other questions:
  • Which expression is equivalent to r^m ÷ r^n?
    6·1 answer
  • The distance around a meteor crater is 9,033ft. Find the diameter of the crater. Use 22/7 for pi. Round to the nearest tenth
    12·1 answer
  • You invested money in two funds. Last year, the first fund paid a dividend of 9% and the second a dividend of 3%, and you receiv
    9·1 answer
  • Quick I need help 23 and 24 easy seventh grade math
    12·1 answer
  • Bar chart help please
    14·2 answers
  • A bag of rice weighs 2.5 pounds. How many ounces is that?
    5·2 answers
  • 16. Find the median for the following data. 16, 15, 14, 14, 17, 13, 17, 14
    13·2 answers
  • Which expression is equivalent to StartFraction RootIndex 7 StartRoot x squared EndRoot Over RootIndex 5 StartRoot y cubed EndRo
    12·2 answers
  • Write an equation for a polynomial function that has zeros of {3,2}
    11·1 answer
  • Mr. Jones bought a cloth of length 3890 cm. How much is the length in m and cm?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!