one tip:
Example: 4 - (-3)
it instantly becomes positive because the negatives are close to each other as shown.
hope that helps :)
Answer:
A 5,5
Step-by-step explanation:
5 <_ 25 - 20 +2
5 <_ 7
hope this helps
Answer:
![y=\displaystyle-\frac{1}{2}x-\displaystyle\frac{1}{2}](https://tex.z-dn.net/?f=y%3D%5Cdisplaystyle-%5Cfrac%7B1%7D%7B2%7Dx-%5Cdisplaystyle%5Cfrac%7B1%7D%7B2%7D)
Step-by-step explanation:
Hi there!
Slope-intercept form:
where <em>m</em> is the slope and <em>b</em> is the y-intercept (the value of y when x is 0)
<u>1) Plug in the slope (</u><u><em>m</em></u><u>)</u>
We're given that the slope is
. In
, replace <em>m</em> with
:
![y=\displaystyle-\frac{1}{2}x+b](https://tex.z-dn.net/?f=y%3D%5Cdisplaystyle-%5Cfrac%7B1%7D%7B2%7Dx%2Bb)
<u>2) Determine the y-intercept (</u><u><em>b</em></u><u>)</u>
![y=\displaystyle-\frac{1}{2}x+b](https://tex.z-dn.net/?f=y%3D%5Cdisplaystyle-%5Cfrac%7B1%7D%7B2%7Dx%2Bb)
We're given the point (-9,4). Plug this point into the equation as
and solve for <em>b</em>:
![4=\displaystyle-\frac{1}{2}(-9)+b\\\\4=\displaystyle\frac{9}{2}+b](https://tex.z-dn.net/?f=4%3D%5Cdisplaystyle-%5Cfrac%7B1%7D%7B2%7D%28-9%29%2Bb%5C%5C%5C%5C4%3D%5Cdisplaystyle%5Cfrac%7B9%7D%7B2%7D%2Bb)
Subtract
from both sides to isolate <em>b</em>:
![4-\displaystyle\frac{9}{2}=\displaystyle\frac{9}{2}+b- \displaystyle\frac{9}{2}\\\\\displaystyle-\frac{1}{2} = b](https://tex.z-dn.net/?f=4-%5Cdisplaystyle%5Cfrac%7B9%7D%7B2%7D%3D%5Cdisplaystyle%5Cfrac%7B9%7D%7B2%7D%2Bb-%20%5Cdisplaystyle%5Cfrac%7B9%7D%7B2%7D%5C%5C%5C%5C%5Cdisplaystyle-%5Cfrac%7B1%7D%7B2%7D%20%3D%20b)
Therefore, the y-intercept is
. Plug this back into
as <em>b</em>:
![y=\displaystyle-\frac{1}{2}x+(\displaystyle-\frac{1}{2})\\\\y=\displaystyle-\frac{1}{2}x-\displaystyle\frac{1}{2}](https://tex.z-dn.net/?f=y%3D%5Cdisplaystyle-%5Cfrac%7B1%7D%7B2%7Dx%2B%28%5Cdisplaystyle-%5Cfrac%7B1%7D%7B2%7D%29%5C%5C%5C%5Cy%3D%5Cdisplaystyle-%5Cfrac%7B1%7D%7B2%7Dx-%5Cdisplaystyle%5Cfrac%7B1%7D%7B2%7D)
I hope this helps!
The answer is
x^2 +2x -5
Using the tabular method to solve