If it is a right triangle and you given me adjacent and opposite the formula is

third side = 21.93
if its not right triangle you need the angle to solve
Answer:
-8
Step-by-step explanation:
(7)*(-8) = -56
(-56) - (-8) = -48
Answer:
what is cos and sin ?
Step-by-step explanation:
Answer and Step-by-step explanation:
(a) Given that x and y is even, we want to prove that xy is also even.
For x and y to be even, x and y have to be a multiple of 2. Let x = 2k and y = 2p where k and p are real numbers. xy = 2k x 2p = 4kp = 2(2kp). The product is a multiple of 2, this means the number is also even. Hence xy is even when x and y are even.
(b) in reality, if an odd number multiplies and odd number, the result is also an odd number. Therefore, the question is wrong. I assume they wanted to ask for the proof that the product is also odd. If that's the case, then this is the proof:
Given that x and y are odd, we want to prove that xy is odd. For x and y to be odd, they have to be multiples of 2 with 1 added to it. Therefore, suppose x = 2k + 1 and y = 2p + 1 then xy = (2k + 1)(2p + 1) = 4kp + 2k + 2p + 1 = 2(kp + k + p) + 1. Let kp + k + p = q, then we have 2q + 1 which is also odd.
(c) Given that x is odd we want to prove that 3x is also odd. Firstly, we've proven above that xy is odd if x and y are odd. 3 is an odd number and we are told that x is odd. Therefore it follows from the second proof that 3x is also odd.
Answer:
−24x2+12xy+6x
Step-by-step explanation:
6x(2y−4x+1)
=(6x)(2y+−4x+1)
=(6x)(2y)+(6x)(−4x)+(6x)(1)
=12xy−24x2+6x