![\bf \cfrac{(a-3)\left( \frac{a}{3}+1 \right)}{\frac{1}{3}}\implies 3\left[ (a-3)\left( \frac{a}{3}+1 \right) \right] \\\\\\ 3\left[\frac{a^2}{3}+a-a-3 \right]\implies 3\left[\frac{a^2}{3}-3 \right]\implies a^2-9](https://tex.z-dn.net/?f=%20%5Cbf%20%5Ccfrac%7B%28a-3%29%5Cleft%28%20%5Cfrac%7Ba%7D%7B3%7D%2B1%20%5Cright%29%7D%7B%5Cfrac%7B1%7D%7B3%7D%7D%5Cimplies%203%5Cleft%5B%20%28a-3%29%5Cleft%28%20%5Cfrac%7Ba%7D%7B3%7D%2B1%20%5Cright%29%20%5Cright%5D%20%5C%5C%5C%5C%5C%5C%203%5Cleft%5B%5Cfrac%7Ba%5E2%7D%7B3%7D%2Ba-a-3%20%20%5Cright%5D%5Cimplies%203%5Cleft%5B%5Cfrac%7Ba%5E2%7D%7B3%7D-3%20%20%5Cright%5D%5Cimplies%20a%5E2-9%20)
when you have polynomials multiplication, say (x+y) (a+b+c), you can always just multiply x(a+b+c) + y(a+b+c), namely each term by all others and sum them up, like above.
The answer is:
x=-8
Because:
If you pick a number(-8) to fill in the equation written below
5x+20+5x=5x-20
After applying the -8 to x you get
-40+20-40=-40-20
When you simply the both sides you get
-60=-60
And that’s right -60 is equal to -60!
Y intercept is (0,-12), the x-intercept is (4,0)
3?
i’m not too sure sorry boo xxo