Answer:
ABCD is not a parallelogram
Step-by-step explanation:
Use the distance formula to determine whether ABCD below is a parallelogram. A(-3,2) B(-3,3) C (5,-3) D (-1.-5)
We have to find the length of the sides of the parallelogram using the formula below
= √(x2 - x1)² + (y2 - y1)² when given vertices (x1, y1) and (x2, y2)
For side AB
A(-3,2) B(-3,3)
= √(-3 -(-3))² + (3 -2)²
= √0² + 1²
= √1
= 1 unit
For side BC
B(-3,3) C (5,-3)
= √(5 -(-3))² + (-3 -3)²
= √8² + -6²
= √64 + 36
= √100
= 10 units
For side CD
C (5,-3) D (-1.-5)
= √(-1 - 5)² + (-5 - (-3))²
= √-6² + -2²
= √36 + 4
= √40 units
For sides AD
A(-3,2) D (-1.-5)
= √(-1 - (-3))² + (-5 -2)²
= √(2² + -7²)
= √(4 + 49)
= √53 units
A parallelogram is a quadrilateral with it's opposite sides equal
From the above calculation
Side AB ≠ CD
BC ≠ AD
Therefore, ABCD is not a parallelogram
Answer:

Step-by-step explanation:
Since the foci are at(0,±c) = (0,±63) and vertices (0,±a) = (0,±91), the major axis is the y- axis. So, we have the equation in the form (with center at the origin)
.
We find the co-vertices b from b = ±√(a² - c²) where a = 91 and c = 63
b = ±√(a² - c²)
= ±√(91² - 63²)
= ±√(8281 - 3969)
= ±√4312
= ±14√22
So the equation is

A right triangle has a 90degree angle
Hey there,
Your question states: <span>Four points are always coplanar if . . .
Your correct answer from the questions above would be
</span>
they lie in the same place
The definition of the word

means : In the same place.
So . .Four points are always coplanar if <span>
they lie in the same place.Hope this helps many.
~Jurgen</span>
Answer:
16 + -16 -4 ( 20 ) - 6)
Step-by-step explanation:
here is answer