Answer:
<u>It</u><u> </u><u>is</u><u> </u><u>(</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>)</u><u>³</u><u> </u><u>-</u><u> </u><u>9</u><u>x</u><u>(</u><u>3</u><u> </u><u>-</u><u> </u><u>x</u><u>)</u>
Step-by-step explanation:
Express 27 in terms of cubes, 27 = 3³:

From trinomial expansion:

open first two brackets to get a quadratic equation:

expand further:

take y to be 3, then substitute:

Answer:
4/7
Step-by-step explanation:
6-x/x+5 let us take x=2
6-2/2+5=4/7
Since ∠2=60° = ∠8 so it will also be 60 °
the sum of the both are 60°+∠7=180°
∠7= 180°- 60° = 120°
<span><span> <span>Akar akar persamaan kuadrat 2x² - 3x -1 = 0 adalah x1 dan x2. Persamaan kuadrat baru yang akar akarnya satu lebih kecil dari dua kali akar akar persamaan kuadrat di atas adalah ........</span></span><span><span><span>A.x² - x - 4 = 0</span><span>B.x² + 5x - 4 = 0</span><span>C.x² - x + 4 = 0</span></span><span><span>D.x² + x + 4 = 0</span><span>E.x² - 5x - 4 = 0</span></span></span><span>Jawaban : A
Penyelesaian :
Akar-akar persamaan lama : x1 dan x2
Akar-akar persamaan baru : xA dan xB
xA = 2x1 - 1
xB = 2x2 - 1
xA + xB = (2x1 - 1) + (2x2 - 1)
= 2 (x1 + x2) - 2
= 2 () - 2
= 3 - 2
xA + xB = 1
xA . xB = (2x1 - 1) (2x2 - 1)
= 4 x1.x2 - 2(x1 + x2) + 1
= 4.(-) - 2() + 1
= -2 - 3 + 1
xA . xB = -4
Jadi persamaan kuadrat baru : x² - (xA + xB)x + xA . xB = 0
x² - x - 4 = 0
</span></span>